Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Recognizing Special Numbers with nsimplify

DZone's Guide to

Recognizing Special Numbers with nsimplify

· Big Data Zone ·
Free Resource

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

I was playing around with SymPy, a symbolic math package for Python, and ran across nsimplify. It takes a floating point number and tries to simplify it: as a fraction with a small denominator, square root of a small integer, an expression involving famous constants, etc.

For example, suppose some calculation returned 4.242640687119286 and you suspect there’s something special about that number. Here’s how you might test where it came from.

>>> from sympy import *
>>> nsimplify(4.242640687119286)
3*sqrt(2)

Maybe you do a calculation numerically, find a simple expression for the result, and that suggests an analytical solution.

I think a more common application of nsimplify might be to help you remember half-forgotten formulas. For example, maybe you’re rusty on your trig identities, but you remember that cos(π/6) is something special.

>>> nsimplify(cos(pi/6))
sqrt(3)/2

Or to take a more advanced example, suppose that you vaguely remember that the gamma function takes on recognizable values at half integer values, but you don’t quite remember how. Maybe something involving π or e. You can suggest that nsimplify include expressions with π and e in its search.

>>> nsimplify(gamma(3.5), constants=[pi, E])
15*sqrt(pi)/8

You can also give nsimplify a tolerance, asking it to find a simple representation within a neighborhood of the number. For example, here’s a way to find approximations to π.

>>> nsimplify(pi, tolerance=1e-5)
355/113

With a wider tolerance, it will return a simpler approximation.

>>> nsimplify(pi, tolerance=1e-2)
22/7

Finally, here’s higher precision approximation to π that isn’t exactly simple:

>>> nsimplify(pi, tolerance=1e-7)
exp(141/895 + sqrt(780631)/895)

Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}