Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Runge-Kutta Implemented as a Fold in Haskell

DZone's Guide to

Runge-Kutta Implemented as a Fold in Haskell

This post shows how the Runge-Kutta method can be written naturally as a fold over the set of points where the solution is needed. These points do not need to be evenly spaced.

· Performance Zone
Free Resource

Evolve your approach to Application Performance Monitoring by adopting five best practices that are outlined and explored in this e-book, brought to you in partnership with BMC.

One of the most widely used numerical algorithms for solving differential equations is the 4th order Runge-Kutta method. This post shows how the Runge-Kutta method can be written naturally as a fold over the set of points where the solution is needed. These points do not need to be evenly spaced.

Given a differential equation of the form

y' = f(t, y)

with initial condition y(t0) = y0, the 4th order Runge-Kutta method advances the solution by an amount of time h by

y_{n+1} = y_n + \frac{h}{6}\left( k_{n1} + 2k_{n2} + 2k_{n3} + k_{n4}\right)

where

k_{n1} &=& f(t_n, y_n) \\ k_{n2} &=& f(t_n + 0.5h, y_n + 0.5hk_{n1}) \\ k_{n3} &=& f(t_n + 0.5h, y_n + 0.5hk_{n2}) \\ k_{n4} &=& f(t_n + h, y_n + hk_{n3}) \\

The Haskell code for implementing the accumulator function for foldl looks very much like the mathematical description above. This is a nice feature of the where syntax.

    rk (t, y) t' = (t', y + h*(k1 + 2.0*k2 + 2.0*k3 + k4)/6.0)
        where
            h  = t' - t
            k1 = f t y
            k2 = f (t + 0.5*h) (y + 0.5*h*k1)
            k3 = f (t + 0.5*h) (y + 0.5*h*k2)
            k4 = f (t + 1.0*h) (y + 1.0*h*k3)     

Suppose we want to solve the differential equation y ‘ = (t2y2) sin(y) with initial condition y(0) = -1, and we want to approximate the solution at [0.01, 0.03, 0.04, 0.06]. We would implement the right side of the equation as

     f t y = (t**2 - y**2)*sin(y)

and fold the function rk over our time steps with

    foldl rk (0, -1) [0.01, 0.03, 0.04, 0.06]

This returns (0.06, -0.9527). The first part, 0.06, is no surprise since obviously we asked for the solution up to 0.06. The second part, -0.9527, is the part we’re more interested in.

If you want to see the solution at all the specified points and not just the last one, replace foldl with scanl.

    scanl rk (0, -1) [0.01, 0.03, 0.04, 0.06]

This returns

    [(0.0, -1.0), (0.01, -0.9917), (0.03, -0.9756), (0.042, -0.9678), (0.06, -0.9527)]

As pointed out in the previous post, writing algorithms as folds separates the core of the algorithm from data access. This would allow us, for example, to change rk independently, such as using a different order Runge-Kutta method. (Which hardly anyone does. Fourth order is a kind of sweet spot.) Or we could swap out Runge-Kutta for a different ODE solver entirely just by passing a different function into the fold.

Evolve your approach to Application Performance Monitoring by adopting five best practices that are outlined and explored in this e-book, brought to you in partnership with BMC.

Topics:
algorithm ,performance ,optimization

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

THE DZONE NEWSLETTER

Dev Resources & Solutions Straight to Your Inbox

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

X

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}