Over a million developers have joined DZone.

Should I use a 32- or a 64-bit JVM?

Bitbucket is for the code that takes us to Mars, decodes the human genome, or drives your next car. What will your code do? Get started with Bitbucket today, it's free.

 This is a question I have faced several times during my career in enterprise software development. Every once in awhile I’ve had to hand out recommendations for configuring a specific new environment. And more often than not, part of the question at hand was related to “Should I use a 32- or a 64-bit JVM”. To be honest, in the beginning I just flipped the coin. Instead of giving a reasoned answer. (Sorry, bros!) But by now I have gathered some more insight on this and thought to share it with you.

First stop – the more, the merrier. Right? So – as 64 > 32 then this would be an easy answer: if possible, always choose 64-bit? Well, hold your horses. The downside of the 64-bit architecture is that the same data structures consume more memory. A lot more. Our measurements show that depending on the JVM version and the operating system version along with hardware architecture you end up using 30-50% more heap than on 32-bit. Larger heap can also introduce longer GC pauses affecting application latency – running a full GC on a 4.5GB heap is definitely going to take longer than on a 3GB one. So it will not be correct to jump on the 64-bit bandwagon just because 64 is bigger than 32.

But… when should you ever desire to use a 64-bit JVM at all then? In most cases the reason is large heap sizes. On different architectures you quickly face limitations of maximum heap size on 32-bit architectures. The following illustrates these limitations on different platforms:

OS Max heap Notes
Linux 2GB 3GB on specific kernels, such as hugemem
Windows 1.5GB Up to 3GB with “/3GB” boot flag and JRE compiled with /LARGEADDRESSAWARE switch)
Mac OS X 3.8GB Alert – could not find an ancient Mac, so this is untested by me

Now how come is it that bad? After all, I bet you have seen 32-bit machines running on 16G+ RAM and doing just fine. What’s wrong with the JVM that it can allocate less than 10% of this 16G on Windows?

Main cause – address space. In a 32-bit system you can theoretically allocate up to 4GB of memory per process. What breaks this on Windows is how process address space is handled. Windows cuts the process address space in half. One half of it is reserved for the kernel (which a user process cannot use) and the other half for the user. It doesn’t matter how much RAM is in the box, a 32-bit process can only use 2GB of RAM. What’s even worse – this address space needs to be contiguous, so in practice you are most often left with just 1.5-1.8GB of heap on Windows boxes.

There is a trick you can pull on 32-bit windows to reduce the kernel space and grow the user space. You can use the /3GB parameter in your boot.ini. However, to actually use this opportunity, the JVM must be compiled/linked using the /LARGEADDRESSAWARE switch.

This unfortunately is not the case, at least with the Hotspot JVM. Until the latest JDK 1.7 releases the JVM is not compiled with this option. You are luckier if you are running on a jRockit on post-2006 versions. In this case you can enjoy up to 2.8-2.9GB of heap size.

So – can we conclude that if your application requires more than ~2-3GB of memory you should always run on 64-bit? Maybe. But you have to be aware of the threats as well. We have already introduced the culprits – increased heap consumption and longer GC pauses. Lets analyze the causes here.

Problem 1: 30-50% of more heap is required on 64-bit. Why so? Mainly because of the memory layout in 64-bit architecture. First of all – object headers are 12 bytes on 64-bit JVM. Secondly, object references can be either 4 bytes or 8 bytes, depending on JVM flags and the size of the heap. This definitely adds some overhead compared to the 8 bytes on headers on 32-bit and 4 bytes on references. You can also dig into one of our earlier posts for more information about calculating the memory consumption of an object.

Problem 2: Longer garbage collection pauses. Building up more heap means there is more work to be done by GC while cleaning it up from unused objects. What it means in real life is that you have to be extra cautious when building heaps larger than 12-16GB. Without fine tuning and measuring you can easily introduce full GC pauses spanning several minutes. In applications where latency is not crucial and you can optimize for throughput only this might be OK, but on most cases this might become a showstopper.

So what are my alternatives when I need larger heaps and do not wish to introduce the overhead caused by 64-bit architecture? There are several tricks we have covered in one of our earlier blog posts- you can get away by heap partitioning, GC tuning, building on different JVMs or allocating memory off the heap.

To conclude, let’s re-state that you should always be aware of the consequences of choosing a 64-bit JVM. But do not be afraid of this option.

And – if you enjoyed this post then stay tuned for more and subscribe to either our RSS feed or Twitter stream to be notified on time.

Bitbucket is the Git solution for professional teams who code with a purpose, not just as a hobby. Get started today, it's free.


Published at DZone with permission of Nikita Salnikov-tarnovski, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

The best of DZone straight to your inbox.

Please provide a valid email address.

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}