Over a million developers have joined DZone.

Standalone Code for Numerical Computing

· Big Data Zone

Read this eGuide to discover the fundamental differences between iPaaS and dPaaS and how the innovative approach of dPaaS gets to the heart of today’s most pressing integration problems, brought to you in partnership with Liaison.

For this week’s resource post, see the page Stand-alone code for numerical computing. It points to small, self-contained bits of code for special functions (log gamma, erf, etc.) and for random number generation (normal, Poisson, gamma, etc.).

The code is available in Python, C++, and C# versions. It could easily be translated into other languages since it hardly uses any language-specific features.

I wrote these functions for projects where you don’t have a numerical library available or would like to minimize dependencies. If you have access to a numerical library, such as SciPy in Python, then by all means use it (although SciPy is missing some of the random number generators provided here). In C++ and especially C#, it’s harder to find some of this functionality.

Last week: Code Project articles

Next week: Clinical trial software

Discover the unprecedented possibilities and challenges, created by today’s fast paced data climate and why your current integration solution is not enough, brought to you in partnership with Liaison

bigdata,big data,numerical computing,standalone code

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

The best of DZone straight to your inbox.

Please provide a valid email address.

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}