DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. The Cold Start Problem

The Cold Start Problem

A discussion of how big data experts can begin to solve problems before they even had data to work with! Read on for more.

John Cook user avatar by
John Cook
·
Aug. 07, 18 · Analysis
Like (1)
Save
Tweet
Share
5.71K Views

Join the DZone community and get the full member experience.

Join For Free

How do you operate a data-driven application before you have any data? This is known as the cold start problem.

We faced this problem all the time when I designed clinical trials at MD Anderson Cancer Center. We used Bayesian methods to design adaptive clinical trial designs, such as clinical trials for determining chemotherapy dose levels. Each patient's treatment assignment would be informed by data from all patients treated previously.

But what about the first patient in a trial? You've got to treat a first patient, and treat them as well as you know how. They're struggling with cancer, so it matters a great deal what treatment they are assigned. So you treat them according to expert opinion. What else could you do?

Thanks to the magic of Bayes theorem, you don't have to have an ad hoc rule that says, "Treat the first patient this way, then turn on the Bayesian machine to determine how to treat the next patient." No, you use Bayes theorem from beginning to end. There's no need to handle the first patient differently because expert opinion is already there, captured in the form of prior distributions (and the structure of the probability model).

Each patient is treated according to all information available at the time. At first, all available information is prior information. After you have data on one patient, most of the information you have is still prior information, but Bayes' theorem updates this prior information with your lone observation. As more data becomes available, the Bayesian machine incorporates it all, automatically shifting weight away from the prior and toward the data.

The cold start problem for business applications is easier than the cold start problem for clinical trials. First of all, most business applications don't have the potential to cost people their lives. Second, business applications typically have fewer competing criteria to balance.

What if you're not sure where to draw your prior information? Bayes can handle that too. You can use Bayesian model selection or Bayesian model averaging to determine which source (or weighting of sources) best fits the new data as it comes in.

Once you've decided to use a Bayesian approach, there's still plenty of work to do, but the Bayesian approach provides scaffolding for that work, a framework for moving forward.

application Data (computing) Naive Bayes classifier Theorem Machine Design Scaffolding (bioinformatics) Distribution (differential geometry)

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Chaos Engineering Tutorial: Comprehensive Guide With Best Practices
  • Multi-Tenant Architecture for a SaaS Application on AWS
  • Integrate AWS Secrets Manager in Spring Boot Application
  • Create CloudWatch Custom Log Metric Alarm Notification Email Solution Using Terraform

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: