DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
The Latest "Software Integration: The Intersection of APIs, Microservices, and Cloud-Based Systems" Trend Report
Get the report
  1. DZone
  2. Data Engineering
  3. Big Data
  4. The "Truth" Behind Unstructured Data

The "Truth" Behind Unstructured Data

Eric Genesky user avatar by
Eric Genesky
·
Feb. 22, 12 · Interview
Like (0)
Save
Tweet
Share
9.16K Views

Join the DZone community and get the full member experience.

Join For Free

 The content of this article was written by Ram Subramanyam Gopalan on his blog, Big Data Integration.

 Couldn't resist that headline! But seriously, if you peel the proverbial onion enough, you will see that the lack of tools to discover / analyze the structure of that data is the truth behind the opaqueness that is implied by calling the data "unstructured".

The need to take a deeper look at this? See this graph:


A lot of data growth is happening around these so-called unstructured data types. Enterprises which manage to automate the collection, organization and analysis of these data types, will derive competitive advantage.

Every data element does mean something, though what it means may not always be relevant for you. Let me explain with common data sets which are currently labeled "unstructured".

  • Text: Lets start with the subsets in here. 
    • Machine generated data (sensors, etc) definitely can be deciphered once you get the meta data structures / templates that the machine uses to generate the data. Of course, some of the fields in the stream will need more advanced analysis/discovery capabilities to automate the analysis.
    • Interaction Data: This is the case for social media data where a lot of business value lies in the long open text fields where people express sentiment about other people and products. To automate the analysis of these, entity recognition and semantic analysis provide the ability to understand the data better. In other words, if you can represent the text data as a collection of entities, relationships between them and relationship attributes like sentiment, you are much closer to analyze the data than you might think!
  • Images: Image recognition algorithms have almost become mainstream (though not very well-received as seen in the reservations against Google and Facebook deploying these at scale). Again, these techniques yield entities though deriving relationships and sentiment are much more challenging.
  • Audio: Again a lot of research is yielding technology which can decipher the content of audio streams and even annotate the resultant content with mood of the speaker! You could then leverage the text analysis techniques to get closer to the analyzable data.
  • Video: Unarguably, this is the most challenging data type due to the sheer volume of data that needs to be handled. Image recognition techniques can be applied per frame or a series of frames to extract entities. Of course, deciphering the action (the video content) is further out in the future. Audio recognition can be applied to understand part of the "action" content.
Based on the above, some new data handling and analysis capabilities are required to extract more value out of these new data types.
  • Dynamic Meta data discovery: This is mainly for text data. This includes the ability to
    • Dynamically derive meta data out of sample result sets e.g. new REST end points
    • Maintain / Master metadata on an ongoing basis
    • At run time, choose the appropriate / best matching metadata set out of several possible options
  • Taxonomy Setup: You need to be able to capture / represent your business and its entities for other analysis layers to reference and annotate incoming data. As your business evolves, this taxonomy will get richer.
  • Entity Extraction and Semantic Analysis: This provides the ability to apply the taxonomy to any text data stream and derive entities and relationships expressed in that stream. This analysis can then be stored either in a relational database or as a graph.
  • Multimedia Recognition Techniques: As described earlier, various techniques for deciphering the content of images, audio and video are required to analyze these data types.
The layering is along the following lines:

A lot of action is still on the top layers but eventually it will encompass audio and video as well.

Do you still believe all of this data deserves the opaque sounding "unstructured" tag? Are you building the capabilities to put the structure back into this data?
 
 
Source: http://bigdataintegration.blogspot.in/2012/02/unstructured-data-is-myth.html#comments
Big data

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Distributed Tracing: A Full Guide
  • Assessment of Scalability Constraints (and Solutions)
  • Implementing PEG in Java
  • 5 Steps for Getting Started in Deep Learning

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: