# Using Mathematica for Group Statistics

# Using Mathematica for Group Statistics

In this post, a data expert, math whiz, and developer goes through how to work with Mathematica to create graphs for Abelian and non-Abelian groups.

Join the DZone community and get the full member experience.

Join For Free**The open source HPCC Systems platform is a proven, easy to use solution for managing data at scale. Visit our Easy Guide to learn more about this completely free platform, test drive some code in the online Playground, and get started today.**

I just ran across `FiniteGroupData`

and related functions in Mathematica. That would have made some of my earlier posts easier to write had I used this instead of writing my own code.

Here's something I find interesting. For each *n*, look at the groups of order at most *n* and count how many are Abelian versus non-Abelian. At first, there are more Abelian groups, but the non-Abelian groups soon become more numerous. Also, the number of Abelian groups grows smoothly, while the number of non-Abelian groups has big jumps, particularly at powers of 2.

Here's the Mathematica code:

```
fgc = FoldList[Plus, 0, Table[FiniteGroupCount[n], {n, 1, 300}]]
fga = FoldList[Plus, 0, Table[FiniteAbelianGroupCount[n], {n, 1, 300}]]
ListLogPlot[ {fgc - fga, fga },
PlotLegends -> {"Non-Abelian", "Abelian"},
Joined -> True,
AxesLabel -> {"order", "count"}]
```

I see the plot legend on my screen, but when saving the plot to a file the legend wasn't included. Don't know why. The jagged blue curve is the number of non-Abelian groups of size up to *n*. The smooth gold curve is the corresponding curve for Abelian groups.

Here's the same plot carried out further to show the jumps at 512 and 1024.

**Managing data at scale doesn’t have to be hard. Find out how the completely free, open source HPCC Systems platform makes it easier to update, easier to program, easier to integrate data, and easier to manage clusters. Download and get started today.**

Published at DZone with permission of John Cook , DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

## {{ parent.title || parent.header.title}}

{{ parent.tldr }}

## {{ parent.linkDescription }}

{{ parent.urlSource.name }}