DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Coding
  3. Languages
  4. Using Python to Find Angles Where Graphs of Bessel Functions Cross

Using Python to Find Angles Where Graphs of Bessel Functions Cross

We explore the mathematical and scientific power of Python and its libraries (like SciPy) by using them to calculate and visualize Bessel functions.

John Cook user avatar by
John Cook
·
May. 10, 19 · Tutorial
Like (4)
Save
Tweet
Share
8.98K Views

Join the DZone community and get the full member experience.

Join For Free

A previous post of mine looked at the angles that graphs make when they cross. For example, sin() and cos(x) always cross with the same angle. The same holds for sin() and cos(kx) since the k simply rescales the x-axis.

The post ended with wondering about functions analogous to sine and cosine, such as Bessel functions. This post will look at that question in more detail. Specifically we'll look at the functions Jν and Yν.

Because these two Bessel functions satisfy the same second order linear homogeneous differential equation, the Strum separation theorem says that their zeros are interlaced: between each pair of consecutive zeros of Jν is exactly one zero of Yν, and between each pair of consecutive zeros of Yν there is exactly one zero of

In the following Python code, we find zeros of Jν, then look in between for places where Jν and Yν cross. Next we find the angle the two curves make at each intersection and plot the angles.

    from scipy.special import jn_zeros, jv, yv
    from scipy.optimize import bisect
    from numpy import empty, linspace, arccos
    import matplotlib.pyplot as plt

    n = 3 # bessel function order
    N = 100 # number of zeros

    z = jn_zeros(n, N) # Zeros of J_n
    crossings = empty(N-1)

    f = lambda x: jv(n,x) - yv(n,x)    
    for i in range(N-1):
        crossings[i] = bisect(f, z[i], z[i+1])

    def angle(n, x):
        # Derivatives of J_nu and Y_nu
        dj = 0.5*(jv(n-1,x) - jv(n+1,x))
        dy = 0.5*(yv(n-1,x) - yv(n+1,x))

        top = 1 + dj*dy
        bottom = ((1 + dj**2)*(1 + dy**2))**0.5
        return arccos(top/bottom)

    y = angle(n, crossings)
    plt.plot(y)
    plt.xlabel("Crossing number")
    plt.ylabel("Angle in radians")
    plt.show()

This shows that the angles steadily decrease, apparently quadratically.

This quadratic behavior is what we should expect from the asymptotics of Jν and Yν: For large arguments they act like shifted and rescaled versions of sin(x)/√x. So if we looked at √xJν and √xYν rather than Jν and Yν we'd expect the angles to reach some positive asymptote, and they do, as shown below.

ANGLE (software) Python (language)

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Automated Performance Testing With ArgoCD and Iter8
  • Continuous Development: Building the Thing Right, to Build the Right Thing
  • Apache Kafka Introduction, Installation, and Implementation Using .NET Core 6
  • How to Create a Dockerfile?

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: