Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Visualizing UK Carbon Emissions

DZone's Guide to

Visualizing UK Carbon Emissions

In this post, we take a look at how to ingest large amounts of data from an API and create data visualizations using Python.

· Big Data Zone ·
Free Resource

The open source HPCC Systems platform is a proven, easy to use solution for managing data at scale. Visit our Easy Guide to learn more about this completely free platform, test drive some code in the online Playground, and get started today.

Have you ever wanted to check carbon emissions in the UK and never had an easy way to do it? Now you can use the Official Carbon Intensity API developed by the National Grid. Let's see an example of how to use the API to summarize the emissions in the month of May. First, we download the data with a request to the API:

import urllib.request
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

period = ('2018-05-01T00:00Z', '2018-05-28T00:00Z')
url = 'https://api.carbonintensity.org.uk/intensity/%s/%s'
url = url % period
response = urllib.request.urlopen(url)
data = json.loads(response.read())['data']

We organize the result in a DataFrame indexed by timestamps:

carbon_intensity = pd.DataFrame()
carbon_intensity['timestamp'] = [pd.to_datetime(d['from']) for d in data]
carbon_intensity['intensity'] = [d['intensity']['actual'] for d in data]
carbon_intensity['classification'] = [d['intensity']['index'] for d in data]
carbon_intensity.set_index('timestamp', inplace=True)

From the classification provided we extract the thresholds to label emissions in low, high, and moderate:

thresholds = carbon_intensity.groupby(by='classification').min()
threshold_high = thresholds[thresholds.index == 'high'].values[0][0]
threshold_moderate = thresholds[thresholds.index == 'moderate'].values[0][0]

Now we group the data by hour of the day and create a boxplot that shows some interesting facts about carbon emissions in May:

hour_group = carbon_intensity.groupby(carbon_intensity.index.hour)

plt.figure(figsize=(12, 6))
plt.title('UK Carbon Intensity in May 2018')
plt.boxplot([g.intensity for _,g in hour_group], 
            medianprops=dict(color='k'))

ymin, ymax = plt.ylim()

plt.fill_between(x=np.arange(26), 
                 y1=np.ones(26)*threshold_high, 
                 y2=np.ones(26)*ymax, 
                 color='crimson', 
                 alpha=.3, label='high')

plt.fill_between(x=np.arange(26), 
                 y1=np.ones(26)*threshold_moderate, 
                 y2=np.ones(26)*threshold_high, 
                 color='skyblue', 
                 alpha=.5, label='moderate')

plt.fill_between(x=np.arange(26), 
                 y1=np.ones(26)*threshold_moderate, 
                 y2=np.ones(26)*ymin, 
                 color='palegreen', 
                 alpha=.3, label='low')

plt.ylim(ymin, ymax)
plt.ylabel('carbon intensity (gCO_2/kWH)')
plt.xlabel('hour of the day')
plt.legend(loc='upper left', ncol=3,
           shadow=True, fancybox=True)
plt.show()

We notice that the medians almost always falls in the moderate emissions region and in two cases it even falls in the low region. In the early afternoon, the medians reach their minimum while the maximum is reached in the evening. It's nice to see that most of the hours present outliers in the low emissions region and only a few outliers are in the high region.

Do you want to know more about boxplots? Check this out!

Managing data at scale doesn’t have to be hard. Find out how the completely free, open source HPCC Systems platform makes it easier to update, easier to program, easier to integrate data, and easier to manage clusters. Download and get started today.

Topics:
big data ,data visualization ,python

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}