DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. What Is the Best OCR Extraction Method on Printed Text?

What Is the Best OCR Extraction Method on Printed Text?

Let's take a look at what the best OCR extraction method is on printed text. Is it domain-based or data-based OCR extraction?

Infrrd AI user avatar by
Infrrd AI
·
Sep. 07, 18 · Opinion
Like (2)
Save
Tweet
Share
3.71K Views

Join the DZone community and get the full member experience.

Join For Free

I spotted another interesting question on Quora related to Machine Learning and OCR; here’s my answer:

I will give you a consultant’s answer — you may not like it but here goes — “It depends.”

The "best" OCR extraction method depends on the context of what you are trying to extract. My guess is that you are not talking about the OCR process itself, but rather how to extract features out of the text that OCR spits out. There are two broad approaches for extraction depending on whether you know the kind of data you are dealing with (invoices, tax docs, grocery labels, etc) or you do not:

Domain-Based OCR Extraction

This approach helps when you know beforehand the kind of data extraction you are after. Let’s say you were trying to extract features of wines from a set of wine ratings and notes that you have OCR-ed. Before you can do the feature extraction, you may consider running topic modeling algorithms on a large collection of existing wine notes to figure out trends and topics. Once you build a learning model out of that you can deploy it on top of OCR extracted data. This will not only help you extract features but also will help in automatically fixing the OCR output of the text which the OCR engine reads incorrectly.

Data Based Extraction OCR Extraction

In case your extraction case is generic and you are unlikely to know in advance what kind of data you will need to extract then the domain based extraction does not work. The data could be an invoice or scanned page of a book. In this case, you need to build an unsupervised learning system and run a large volume of data through it. The system would need to use a number of signals — the source of the data, words in OCR data, meta tags on the file, geographical location, etc. to first take the best guess of categorizing the data in different buckets. You should then build extraction models on top of each of these buckets. When a new document is OCR-ed, you try to categorize the document in an existing classification bucket based on matches. Once that classification guess is made then you run extraction algorithms based on that bucket. If it does not match any bucket then you create a new bucket and just do the base extraction. Rinse and repeat. Over time, the new bucket will also fill up with enough data. And then you can run domain based extraction on top of that.

A lot of companies are using Machine Learning in innovative ways to solve OCR challenges for enterprises, but this is the basis of most feature extraction algorithms.

Hope this helps, have fun!

Click here for free demo.

Machine learning Data (computing)

Published at DZone with permission of Infrrd AI. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Software Maintenance Models
  • What’s New in the Latest Version of Angular V15?
  • Developer Productivity: The Secret Sauce to Building Great Dev Teams
  • Top 11 Git Commands That Every Developer Should Know

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: