DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. Big Data
  4. Where Is the Edge?

Where Is the Edge?

Edge computing means putting data, apps, and services near their generators, leading to better performance and, particularly for Big Data, better management.

Ralph Rio user avatar by
Ralph Rio
·
May. 03, 17 · Opinion
Like (4)
Save
Tweet
Share
6.37K Views

Join the DZone community and get the full member experience.

Join For Free

Edge computing has data, applications, and services at the logical extremes of a network near the sensors or in the devices generating data, and away from centralized cloud data centers. Data management, communication, and some analytics occur at the source of the data i.e., in each device which is much smaller in scale compared to the cloud. This “small data” approach allows each local device to assess its own health and performance – particularly when immediacy of decision making is critical.  With pre-processing at the edge, “Big Data” in the cloud becomes easier to manage.

Defining the Edge

The edge includes intelligent devices like instruments, special purpose computers like PLCs, and more general purpose computers like Raspberry Pis. These devices often have edge computing functions including a network connection, storage and some software specific to the device. The edge also includes sensors that connect to network gateways having the edge computing resources.

Edge Computing Architecture

An automotive analogy illustrates this distinction between edge and cloud computing. Electric cars contain software to assess the health and performance of the batteries. This battery management system reads data from the sensors, stores it in the car, and uses analytics to alert the driver when health degrades i.e., small data with edge computing. When connected to the internet, the data is uploaded to the cloud where more advanced analytics assess performance across a range of cars, driver profiles, driving conditions and climates. This helps engineers design better batteries and cars i.e., big data with analytics in the cloud.

Common Edge Devices

What Happens at the Edge?

At the edge, we have data storage, buffering, communication, filtering/preparation, transportation, and limited analytics (compared to what is available in the cloud). Typical applications involve algorithms to assess equipment health and alert the operator when issues arise. In addition, analytics for improved process control have recently started to emerge. On the cloud, similar applications for health monitoring and process optimization exist, but with the added capability to aggregate data from many IoT devices. The higher volume of data with its inherent added intricacy are combined with more advanced analytics to anticipate issues further into the future. Thus, strategic decision support is best in the cloud. The more immediate, tactical decisions can be done at the edge.

Why Use the Edge in Industrial Environments?

In an industrial IoT system with only centralized resources, a network interruption becomes lost data, delayed problem identification, and lost alerts. This could involve loss of predictive maintenance alerts causing unplanned downtime, or missed opportunities for process optimization.

Resources at the edge help to mitigate these network outage issues. Related constraints with similar impact include network latency (delay) and bandwidth (throughput). Edge computing helps to mitigate a single point of failure for a more robust IIoT solution when part of the network is compromised by physical (hardware), virtual (software) or security failures.

Usually, most edge data are noise to the larger system in the sense that it has no real use. For example, when monitoring condition, do the centralized resources want the data when nothing changed? When meaningful change is detected, then the data needs to be transferred. It does no good to use data transport, storage and processing resources putting data into the cloud when it is not useful.

Recommendation

Industrial IoT applications often involve mission critical objectives for asset intensive industries like reducing unplanned downtime, improving worker safety and enhancing asset performance. Edge computing assures a robust architecture more resilient to issues with the network or centralized resources. Today, many original equipment manufacturers (OEM) provide condition monitoring services to their customers. For particularly critical machines, end users have developed condition monitoring applications when this service is not available from the OEM. Both types of users of IIoT solutions should consider edge computing to make their solution simpler (data pre-processing at the edge) and more robust (no single point of failure).

Big data

Published at DZone with permission of Ralph Rio, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Handling Automatic ID Generation in PostgreSQL With Node.js and Sequelize
  • How to Cut the Release Inspection Time From 4 Days to 4 Hours
  • When AI Strengthens Good Old Chatbots: A Brief History of Conversational AI
  • The Top 3 Challenges Facing Engineering Leaders Today—And How to Overcome Them

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: