DZone
Big Data Zone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
  • Refcardz
  • Trend Reports
  • Webinars
  • Zones
  • |
    • Agile
    • AI
    • Big Data
    • Cloud
    • Database
    • DevOps
    • Integration
    • IoT
    • Java
    • Microservices
    • Open Source
    • Performance
    • Security
    • Web Dev
DZone > Big Data Zone > Why Isn't Everything Normally Distributed?

Why Isn't Everything Normally Distributed?

John Cook user avatar by
John Cook
·
Mar. 25, 15 · Big Data Zone · Interview
Like (1)
Save
Tweet
7.51K Views

Join the DZone community and get the full member experience.

Join For Free

Adult heights follow a Gaussian, a.k.a. normal, distribution [1]. The usual explanation is that many factors go into determining one’s height, and the net effect of many separate causes is approximately normal because of the central limit theorem.

If that’s the case, why aren’t more phenomena normally distributed? Someone asked me this morning specifically about phenotypes with many genetic inputs.

The central limit theorem says that the sum of many independent, additive effects is approximately normally distributed [2]. Genes are more digital than analog, and do not produce independent, additive effects. For example, the effects of dominant and recessive genes act more like max and min than addition. Genes do not appear independently—if you have some genes, you’re more likely to have certain other genes—nor do they act independently—some genes determine how other genes are expressed.

Height is influenced by environmental effects as well as genetic effects, such as nutrition, and these environmental effects may be more additive or independent than genetic effects.

Incidentally, if effects are independent but multiplicative rather than additive, the result may be approximately log-normal rather than normal.


Fine print:

[1] Men’s heights follow a normal distribution, and so do women’s. Adults not sorted by sex follow a mixture distribution as described here and so the distribution is flatter on top than a normal. It gets even more complicated when you considered that there are slightly more women than men in the world. And as with many phenomena, the normal distribution is a better description near the middle than at the extremes.

[2] There are many variations on the central limit theorem. The classical CLT requires that the random variables in the sum be identically distributed as well, though that isn’t so important here.

Distribution (differential geometry) Theorem Analog (program) Factor (programming language) Net (command) Gaussian (software)

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Secure Proxy for HIPAA-Compliant API Analytics
  • Python Class Attribute: Class Attribute vs. Instance Attribute
  • Demystifying Cloud-Native Data Management: Layers of Operation
  • Data Mesh — Graduating Your Data to Next Level

Comments

Big Data Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • MVB Program
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends:

DZone.com is powered by 

AnswerHub logo