DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. Databases
  4. Why Use Provisioned IOPS Volumes for AWS Databases?

Why Use Provisioned IOPS Volumes for AWS Databases?

In this blog, we’ll use some test results to look at the rationale for using provisioned IOPS volumes for AWS databases.

Peter Zaitsev user avatar by
Peter Zaitsev
·
Jun. 07, 16 · Opinion
Like (2)
Save
Tweet
Share
4.37K Views

Join the DZone community and get the full member experience.

Join For Free

One piece of advice you often hear running MySQL, MongoDB or other databases in the AWS EC2 environment is that you should use volumes with provisioned IOPs. This kind of makes sense on the “marketing” level, where provisioned IOPS (io1) volumes are designed for IO-intensive database workloads, while General Purpose (gp2) volumes are not. But if you go to the AWS volume type description, you will find that gp2s are shown to have pretty good IO performance. So where do all these supposed database performance problems for Amazon Elastic Block Store (EBS), with no provisioned IOs, come from?

Here is what I found out running experiments with a beta of Percona Monitoring and Management.

I ran a typical database instance workload, where the OLTP workload uses around 20% of the system capacity, and periodically I have a single user IO intensive batch job hitting the same system. Even if you do not have batch jobs running, your backup is likely to show this same IO pattern. 

What would happen in this case if you have conventional local storage? Some queueing happens on the storage level, but as there is only one user with intensive IO, the impact is typically not very significant. What do we see from the AWS gp2 volume? 

provisioned IOPS volumes for AWS

At first, the read services spike to more than 1.5K IOPS, and while latency increases from normal 1-2ms, it remains below 10ms on average. However, after a couple of minutes, IOPS drops to around 500 and read latency spikes to over 100ms (note the log scale on the graph).

What is happening here? The gp2 volumes behave differently than your conventional storage by allowing IO bursts for short periods of time – after a short period of time, however, the IOs are throttled (in this case to only 500/sec). How does the throttling work? By adding delay to IO completion so that only the required IOs are completed per second, and the more concurrency we add to such throttled devices, the higher the average IO response latency is!

What does this mean from an application point of view? Let’s say you have a database transaction that requires 100 reads from the disk. If you have an average of 1ms latency, this transaction takes about 100ms reading from the disk, and will likely be seen as very good user experience. If you have an average IO latency of 100ms, the same transaction spends ten seconds reading from the disk–well above the tolerance for many users.   

As a DBA, you can see how putting an extra (small) load on the database system (such as running batch job or backup) can cause your boss to come screaming that the website is down ten minutes later.

There is another key difference between conventional local storage such as RAID or SSD, and an EBS volume. Not all local storage IO is created equal, while an EBS general purpose volume seems to inject latencies into IO operations independent of what the IO is. 

Transactional log flushes are one of the most latency critical IO operations databases perform. These are very small (often just 1 page) sequential writes. RAID controllers and SSDs can handle these very quickly by only writing in memory (battery or capacitor backed up), at a fraction of the costs of other operations. This is not the case for EBS gp2: log writes come with high latency. 

We can see this latency in Performance Schema graphs, where such patch jobs correlate to a huge amount of time spent writing to the InnoDB Transactional Log file or Binary Log File:

provisioned IOPS volumes for AWS

We can also see the main InnoDB thread spending up to 30% of its time flushing the log – the number is drastically lower for typical storage configuration:

provisioned IOPS volumes for AWS

Another way AWS EBS storage is different from the typical local storage is that size directly buys you performance. GP2 volumes provide 3 IOPS/GB, up to 10000 IOPS (99 percentile figure),  which means that larger storage will have higher performance–though if anything, this means you’re getting better performance from your larger production volumes than your smaller test ones.

A final note: EBS storage is essentially connected to a network, which means both slightly higher latencies and limited throughput. According to the documentation, there is 160MiB/s throughput limit per volume, which is a lot less than even inexpensive SATA SSD. SSD often can provide 500MB/sec or more, and are generally limited by SATA bus capacity.  

My takeaways from these results:

  • EBS General Purpose volumes have decent performance for light-duty workloads – if you don’t demand a lot of IOPS from your storage for prolonged periods of time. If you do, storage with provisioned IOPS is a better choice
  • Whenever you’re using Amazon or other environments with multi-tenant virtualized storage, I would highly suggest running some benchmark on how it behaves for the above scenarios. The assumptions you have about your conventional RAID or SSD storage might not apply.
AWS IOPS Database

Published at DZone with permission of Peter Zaitsev, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • How To Generate Code Coverage Report Using JaCoCo-Maven Plugin
  • Using AI and Machine Learning To Create Software
  • Kubernetes vs Docker: Differences Explained
  • RabbitMQ vs. Memphis.dev

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: