

 Thanks for visiting DZone today,

 Edit Profile

 	Manage Email Subscriptions
	

 How to Post to DZone

	

 Article Submission Guidelines

 Sign Out
 View Profile

 Post

 	

 Post an Article

	
 Manage My Drafts

 Over 2 million developers have joined DZone.

 Log In
 /
 Join

 Refcards
 Trend Reports

 Events
 Video Library

 Refcards

 Trend Reports

 Events

 View Events
 Video Library

 Related

 	
 Top React Libraries for Data-Driven Dashboard App Development

	
 5 Advantages of Dart Over JavaScript, Python, and Bash

	
 Effective Code Reviews For Remote Teams

	
 How to Build a Concurrent Chat App With Go and WebSockets

 Trending

 	
 Prompt and Retrieval Augmented Generation Using Generative AI Models

	
 Optimizing Kubernetes Clusters for Better Efficiency and Cost Savings

	
 Unlocking the Power of Kubernetes Scheduling: A Deep Dive Into Pods and Nodes

	
 Automating Django Deployments: Integrating CI/CD With GitHub Actions and Heroku

 	DZone
	Coding
	Languages
	DocRaptor vs. WeasyPrint: A PDF Export Showdown

 DocRaptor vs. WeasyPrint: A PDF Export Showdown

 This article analyzes both DocRaptor and WeasyPrint, two PDF exports. Which one will take home the gold medal? Read below to find out!

 By

 Tyler Hawkins

 CORE

 ·

 Jan. 25, 21

 ·
 Analysis

 Like

 (6)

 Comment

 Save

 Tweet

 Share

 8.1K
 Views

 Join the DZone community and get the full member experience.

 Join For Free

 Introduction

I recently published an article comparing HTML-to-PDF export libraries. In it, I explored options like the native browser print functionality, open-source libraries jsPDF and pdfmake, and the paid service DocRaptor. Here's a quick recap of my findings:

 If you want the simplest solution and don’t need a professional-looking document, the native browser print functionality should be just fine. If you need more control over the PDF output, then you’ll want to use a library. jsPDF shines when it comes to single-page content generated based on HTML shown in the UI. pdfmake works best when generating PDF content from data rather than from HTML. DocRaptor is the most powerful of them all with its simple API and its beautiful PDF output. But again, unlike the others, it is a paid service. However, if your business depends on elegant, professional document generation, DocRaptor is well worth the cost.

In the comment section for my article on Dev.to, one person suggested I take a look at Paged.js and WeasyPrint as additional alternatives to consider. This person is Andreas Zettl, and he has an awesome demo site full of Print CSS examples.

So, today we'll explore the relative strengths and weaknesses of DocRaptor and WeasyPrint.

 WeasyPrint Overview

Let's start with WeasyPrint, an open-source library developed by Kozea and supported by Court Bouillon. For starters, it's free, which is a plus. It's licensed under the BSD 3-Clause License, a relatively permissive and straightforward license. WeasyPrint allows you to generate content as either a PDF or a PNG, which should adequately cover most use cases. It's built for Python 3.6+, which is great if you're a Python developer. If Python is not your forte or not part of your company's tech stack, then this may be a non-starter for you.

One of the biggest caveats to be aware of is that WeasyPrint does not support JavaScript-generated content! So, when using this library, you'll need to be exporting content that is generated server-side. If you are relying on dynamically generated content or charts and tables powered by JavaScript, then this library is not for you.

 Installing WeasyPrint

Getting up and running with WeasyPrint is fairly easy. They provide installation instructions on their website, but I use pyenv to install and manage Python rather than Homebrew, so my installation steps were more like the following:

Installing pyenv and Python:

install pyenv using Homebrew
brew install pyenv

install Python 3.7.3 using pyenv
pyenv install 3.7.3

specify that I'd like to use version 3.7.3 when I use Python
pyenv global 3.7.3

quick sanity check
pyenv version

add `pyenv init` to my shell to enable shims and autocompletion
echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi' >> ~/.zshrc

Installing WeasyPrint and running it against the WeasyPrint website:

pip install WeasyPrint

weasyprint https://weasyprint.org/ weasyprint.pdf

As you can see, the simplest way to use WeasyPrint from your terminal is to run the weasyprint command with two arguments: the URL input and the filename output. This creates a file called weasyprint.pdf in the directory from which you run the command. Here's a screenshot of the PDF output when viewed in the Preview app on a Mac:

 Sample PDF output from WeasyPrint

Looks great! WeasyPrint also has a full page of examples you can check out which showcases reports, invoices, and even event tickets complete with a barcode.

DocRaptor Overview

Now, let's consider DocRaptor. DocRaptor is closed-source and is available through a paid license subscription, although, you can generate test documents for free. It uses the PrinceXML HTML-to-PDF engine and is the only API powered by this technology.

Unlike WeasyPrint's Python-only usage, DocRaptor has SDKs for PHP, Python, Node, Ruby, Java, .NET, and JavaScript/jQuery. It can also be used directly via an HTTP request, so you can generate a PDF right from your terminal using cURL. This is great news if you're someone like me who doesn't have Python in their arsenal.

DocRaptor can export content as a PDF, XLS, or XLSX document. This can come in handy if your content is meant to be a table compatible with Excel. For the time being though, we'll just look at PDFs, since that's something both WeasyPrint and DocRaptor support.

One relative strength of DocRaptor compared to WeasyPrint is that it can wait for JavaScript on the page to be executed, so it's perfect for use with dynamically generated content and charting libraries.

Getting Started With DocRaptor

DocRaptor has guides for each of their SDKs that are well worth reading when first trying out their service. Since we ran the WeasyPrint example from the command line, let's also run DocRaptor in our terminal by using cURL to make an HTTP request. DocRaptor is API-based, so there's no need to download or install anything.

Here's their example you can try:

curl http://YOUR_API_KEY_HERE@docraptor.com/docs \
 --fail --silent --show-error \
 --header "Content-Type:application/json" \
 --data '{"test": true,
 "document_url": "http://docraptor.com/examples/invoice.html",
 "type": "pdf" }' > docraptor.pdf

And, here's the output after running that code snippet in your terminal:

 Sample PDF output from DocRaptor

Voila: a nice and simple invoice. DocRaptor's example here isn't as complex as WeasyPrint's was, so let's try generating a PDF from one of DocRaptor's more advanced examples.

curl http://YOUR_API_KEY_HERE@docraptor.com/docs \
 --fail --silent --show-error \
 --header "Content-Type:application/json" \
 --data '{"test": true,
 "document_url": "https://docraptor.com/samples/cookbook.html",
 "type": "pdf" }' > docraptor_cookbook.pdf

Here's the output for this cookbook recipe PDF:

 Sample PDF output from DocRaptor using their Cookbook Recipe example

 Pretty neat! Just like WeasyPrint, DocRaptor can handle complex designs and full-bleed layouts that extend to the very edge of the page. One important callout here is that DocRaptor supports footnotes, as seen in this example. WeasyPrint, on the other hand, has not yet fully implemented the CSS paged media specifications, so it can't handle footnote generation.

You can view more DocRaptor examples on their site including a financial statement, a brochure, an invoice, and an e-book.

JavaScript Execution

So far, we've seen the powers and similarities of both DocRaptor and WeasyPrint. But, one core difference we touched on above is that WeasyPrint does not wait for JavaScript to execute before generating the PDF. This is crucial for applications built with a framework like React. By default, React apps contain only a root container div in the HTML, and then JavaScript runs to inject the React components onto the page.

So, if you try to generate a PDF from the command line for an app built with React, you won't get the actual app content! Instead, you'll likely see the content of the noscript tag, which typically contains a message stating something like "You need to enable JavaScript to run this app."

This is also the case for applications that rely on charting libraries like Google Charts, HighCharts, or Chart.js. Without the JavaScript running, no chart is created.

As an example, consider this simple web page I've put together. It contains a page header, a paragraph included in the HTML source code, and a paragraph inserted into the DOM by JavaScript. You can find the code on GitHub. Here's what the page looks like:

 DocRaptor JS demo web page

Now, let's use WeasyPrint to generate a PDF from the web page by running the following command in the terminal:

weasyprint http://tylerhawkins.info/docraptor-js-demo/ weasyprint_js_demo.pdf

Here's the output:

 JS demo PDF output from WeasyPrint

Oh no! Where's the second paragraph? It's not there because the JavaScript was never executed.

Now, let's try again, but this time with DocRaptor. In order to have JavaScript run on the page, we must provide DocRaptor with the "javascript": true argument in our options object. Here's the code:

curl http://YOUR_API_KEY_HERE@docraptor.com/docs \
 --fail --silent --show-error \
 --header "Content-Type:application/json" \
 --data '{"test": true,
 "javascript": true,
 "document_url": "http://tylerhawkins.info/docraptor-js-demo/",
 "type": "pdf" }' > docraptor_js_demo.pdf

And, the output:

 JS demo PDF output from DocRaptor

 Tada! The JavaScript has been successfully executed, leading to the insertion of the second paragraph.

Conclusion

So, which should you use, WeasyPrint or DocRaptor? It depends on your use case.

If your app contains static content that doesn't rely on JavaScript, if Python is part of your tech stack, or if you need PNG image output, then WeasyPrint is an excellent choice. It's open-source, free, and flexible enough to handle the visually complex output.

If you need to use a programming language other than Python, or you rely on the execution of JavaScript to render the content you need to be exported, DocRaptor is the right choice.

Table of Comparisons

As an added bonus, here's a comparison table for a quick summary of these two libraries:

 	 	WeasyPrint	DocRaptor
	Open source	Yes	No
	Cost	Free	Paid license
	Programming language	Python	PHP, Python, Node, Ruby, Java, .NET, and JavaScript/jQuery
	Output format	PDF or PNG	PDF, XLS, or XLSX
	Can handle complex designs	Yes	Yes
	Can execute JavaScript	No	Yes

Happy coding!

 PDF
 Open source
 JavaScript
 Python (language)
 Library
 app
 code style
 IT
 Showdown (poker)
 terminal

 Opinions expressed by DZone contributors are their own.

 Related

 	
 Top React Libraries for Data-Driven Dashboard App Development

	
 5 Advantages of Dart Over JavaScript, Python, and Bash

	
 Effective Code Reviews For Remote Teams

	
 How to Build a Concurrent Chat App With Go and WebSockets

 Partner Resources

 Comments

 	

	

	

	

 ABOUT US

 	About DZone
	Send feedback
	Careers
	Sitemap

 ADVERTISE

 	Advertise with DZone

 CONTRIBUTE ON DZONE

 	Article Submission Guidelines
	Become a Contributor
	Core Program
	Visit the Writers' Zone

 LEGAL

 	Terms of Service
	Privacy Policy

 CONTACT US

 	3343 Perimeter Hill Drive
	Suite 100
	Nashville, TN 37211
	support@dzone.com

 Let's be friends:

 	

	

	

	

