DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Coding
  3. Languages
  4. Kick the Tires: Rust Crash Course Lesson One Exercise Solutions

Kick the Tires: Rust Crash Course Lesson One Exercise Solutions

In the last post, we gave you some homework. Today, we go over the answers to those questions, explaining the Rust code along the way.

Michael Snoyman user avatar by
Michael Snoyman
CORE ·
Oct. 30, 18 · Tutorial
Like (1)
Save
Tweet
Share
7.28K Views

Join the DZone community and get the full member experience.

Join For Free

Below are the solutions to the exercises from the last Rust Crash Course lesson, "Kick the Tires."

This post is part of a series based on teaching Rust at FP Complete. If you're reading this post outside of the blog, you can find links to all posts in the series at the top of the introduction post. You can also subscribe to the RSS feed.

Exercise 1

The following code is broken:

fn main() {
    let val: String = String::from("Hello, World!");
    printer(val);
    printer(val);
}

fn printer(val: String) {
    println!("The value is: {}", val);
}

We got an error message about a move. We'll learn more about moves in the next lesson when we discuss ownership. There are two basic solutions. First, the less-than-ideal one:

Clone

We've moved the original val into the first call to printer, and can't use it again. One workaround is to instead move a clone of val into that call, leaving the original unaffected:

fn main() {
    let val: String = String::from("Hello, World!");
    printer(val.clone());
    printer(val);
}

fn printer(val: String) {
    println!("The value is: {}", val);
}

Notice that I only cloned val the first time, not the second time. We don't need val again after the second call, so it's safe to move it. Using an extra clone is expensive since it requires allocating memory and performing a buffer copy.

Speaking of it being expensive...

Pass by Reference

Instead of moving the value, we can instead pass it into the printer function by reference. Let's first try to achieve that by just modifying printer:

fn main() {
    let val: String = String::from("Hello, World!");
    printer(val);
    printer(val);
}

fn printer(val: String) {
    println!("The value is: {}", val);
}

This doesn't work, because when we call printer, we're still giving it a String and not a reference to a String. Fixing that is pretty easy:

fn main() {
    let val: String = String::from("Hello, World!");
    printer(&val);
    printer(&val);
}

Note that the ampersand means both:

  • A reference to this type.
  • Take a reference to this value.

There's an even better way to write printer:

fn printer(val: &str) {
    println!("The value is: {}", val);
}

By using str instead of String, we can pass in string literals, and do not need to force the allocation of a heap object. We'll get to this in more detail when we discuss strings.

Exercise 2

This is the broken code:

fn main() {
    let i = 1;

    loop {
        println!("i == {}", i);
        if i >= 10 {
            break;
        } else {
            i += 1;
        }
    }
}

The error message we get from the compiler is pretty informative:

cannot assign twice to immutable variable i

In order to fix this, we change the variable from immutable to mutable:

fn main() {
    let mut i = 1;
    ...

Exercise 3

This exercise asked you do see when you could leave out semicolons. Here's a simple rule:

  • The statement is the last statement in a block.
  • The type of the expression is unit.

For example, in this code, removing the semicolon is fine:

fn main() {
    for i in 1..11 {
        println!("i == {}", i);
    }
}

That said, it tends to be somewhat idiomatic to leave semicolons on expressions like these which are purely effectful.

Exercise 4

This exercise was to implement FizzBuzz in Rust. Repeating the rules here:

  • Print the numbers 1 to 100.
  • If the number is a multiple of 3, output fizz instead of the number.
  • If the number is a multiple of 5, output buzz instead of the number.
  • If the number is a multiple of 3 and 5, output fizzbuzz instead of the number.

Here's one possible solution using if/ else fallbacks:

fn main() {
    for i in 1..101 {
        if i % 3 == 0 && i % 5 == 0 {
            println!("fizzbuzz");
        } else if i % 3 == 0 {
            println!("fizz");
        } else if i % 5 == 0 {
            println!("buzz");
        } else {
            println!("{}", i);
        }
    }
}

This has at least one downside: it will need to test i % 3 == 0 and i % 5 == 0 potentially multiple times. Under the surface, the compiler may optimize this away. But still, the repeated modulus calls are just sitting in the code taunting us! We can instead use pattern matching:

fn main() {
    for i in 1..101 {
        match (i % 3 == 0, i % 5 == 0) {
            (true, true) => println!("fizzbuzz"),
            (true, false) => println!("fizz"),
            (false, true) => println!("buzz"),
            (false, false) => println!("{}", i),
        }
    }
}

Or, if you want to have some fun with wildcard matching:

fn main() {
    for i in 1..101 {
        match (i % 3, i % 5) {
            (0, 0) => println!("fizzbuzz"),
            (0, _) => println!("fizz"),
            (_, 0) => println!("buzz"),
            (_, _) => println!("{}", i),
        }
    }
}

I'm not going to tell you which of these is the "best" solution. And there are certainly other implementations that could be attempted. This was meant to give you a feel for some more Rust constructs.

Exercise (mathematics) Rust (programming language) Crash (computing)

Published at DZone with permission of Michael Snoyman, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Memory Debugging: A Deep Level of Insight
  • The 12 Biggest Android App Development Trends in 2023
  • Secrets Management
  • Core Machine Learning Metrics

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: