DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
View Events Video Library
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Integrating PostgreSQL Databases with ANF: Join this workshop to learn how to create a PostgreSQL server using Instaclustr’s managed service

Mobile Database Essentials: Assess data needs, storage requirements, and more when leveraging databases for cloud and edge applications.

Monitoring and Observability for LLMs: Datadog and Google Cloud discuss how to achieve optimal AI model performance.

Automated Testing: The latest on architecture, TDD, and the benefits of AI and low-code tools.

Related

  • Artificial Intelligence (AI) Utilizing Deep Learning Techniques to Enhance ADAS
  • Deep Learning Frameworks Comparison
  • Six Useful Resources for Engineers
  • Exploring Machine Learning Frameworks for Software Developers

Trending

  • Automate Migration Assessment With XML Linter
  • Building Real-Time Applications to Process Wikimedia Streams Using Kafka and Hazelcast
  • Next.js vs. Gatsby: A Comprehensive Comparison
  • The Stairway to Apache Kafka® Tiered Storage
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. The Difference Between Artificial Intelligence, Machine Learning, and Deep Learning

The Difference Between Artificial Intelligence, Machine Learning, and Deep Learning

In this article, I will discuss all three Artificial Intelligence, Machine Learning, and Deep Learning in detail, along with their examples.

Alex Carey user avatar by
Alex Carey
·
Jul. 25, 22 · Survey/Contest
Like (4)
Save
Tweet
Share
6.02K Views

Join the DZone community and get the full member experience.

Join For Free

Technology continues to evolve. Who would have dreamt of smartphones, Alexa, electric cars, and all the modern technology we see today back in the 90s. It’s incredible to see devices around us with intelligence sometimes surpassing the human minds.

You may ask, what made this possible? The answer is Artificial Intelligence. You must have heard about Machine Learning, Deep Learning, and Artificial Intelligence before, probably thousands of times.

If a machine is able to make a decision on its own, this intelligence is accredited to these three. But very few people are clear about these; what’s exactly the difference between Artificial Intelligence, Machine Learning, and Deep Learning?

In this article, I’m going to discuss all three Artificial Intelligence, Machine Learning, and Deep Learning in detail, along with their examples, so anyone having ambiguities regarding their use in the real world would have their doubts cleared.

What’s Artificial Intelligence?

You may have come across hundreds of definitions of AI; more or less, all of them mean the same thing. 

Here’s John McCarthy’s definition that he wrote in his 2004’s paper,” It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable."

Let’s make it simple. AI is a field that combines both computer science and datasets, ultimately creating a powerful problem-solving system. And yes, machine learning and deep learning are also part of this system.

Together, these technologies create expert systems that are capable of making intelligent decisions and learning over time based on their past experiences and data fed to them.

Example of Artificial Intelligence

There are hundreds of examples of AI around us. But let’s just take the most simple ones, so you can get your doubts and confusion cleared.

Websites today use chatbots to improve customer experience. But what makes them intelligent? How come they are able to talk and answer your queries like real human beings? The answer is artificial intelligence.

Basically, they are programmed algorithms. Artificial intelligence app development is quite popular these days. AI experts program them with the frequently asked questions in mind. Some of them are so intelligent that they can even take and track orders and direct calls.

Further, they can impersonate the real customer support representative, their style of conversation to tone, so the customer doesn’t feel like interacting with a robot.

With rapidly advancing technology, it’s possible to rectify common mistakes. A bad rating will signify the bot to identify the problem and prevent the same mistake in the future to ensure maximum customer satisfaction.

What Is Machine Learning?

As mentioned before, machine learning comes under the umbrella term of artificial intelligence. Machine learning empowers a machine to automatically learn and improve the experience without even being programmed on a regular basis to deal with new problems and complex scenarios.

Basically, it focuses on the development of computer programs that can access data and use them in the future for making intelligent decisions. The more a machine is exposed to new environments and situations, the quicker it learns.

The learning never stops; a machine keeps learning basic on its observations and given data. The primary aim of machine learning is to make computers intelligent so humans don’t have to program them for small tasks.

Companies are spending profusely on machine learning app development to create apps that are intelligent and can get along on their own.

So, as far as the difference is concerned, AI is a broad term, and ML is a part of AI.

Example of Machine Learning

Everything that’s part of AI is automatically related to ML. However, to make the two easier to distinguish or comprehend for you, let me walk you through an example.

Image recognition and speech recognition both are perfect examples of machine learning. 

Today, a device can identify an object as a digital image. You may ask how? Thanks to machine learning, a device can pick up the intensity of pixels in an image and, based on it, recognize an image.

It’s because of machine learning that an X-ray can be labeled as cancerous or normal. Likewise, crime investigation and law enforcement departments can recognize handwriting by segmenting a letter into different pages.

The same goes for speech recognition. A machine can translate speech into text -- haven’t you noticed voice typing has become quite popular these days?

The software we use for our day-to-day tasks of translating speech into texts are examples of machine learning. 

Appliance control is another example of machine learning. People in developed countries use speech recognition software like Alexa to send instructions to their air conditioner, tower fan, and all other appliances, even if they are away from home.

What Is Deep Learning?

Machine learning is a part of artificial intelligence, and deep learning is a subset of machine learning. It’s a system of neural networks that stimulates the behavior of the human brain. 

Have you ever noticed how a human brain learns from its past experiences? When it learns touching a hot cup can leave you with a burn, it never lets you repeat the same mistake. 

The neural network inside our mind keeps learning from large amounts of data, improves our analytics abilities, and makes us intelligent.

The concept of deep learning in AI and ML is the same. It improves automation, makes a machine energy efficient when it comes to performing analytics and physical tasks, and makes it independent of human intervention to keep the operations streamlined.

Example of Deep Learning

Every deep learning example is actually also an example of artificial intelligence and machine learning.

Driverless vehicles are the most significant example of deep learning. Cars have to constantly react according to the change in the environment to prevent accidents and damage to the car.

With the help of patterns formed, a car learns it’s important to stop the car when someone is crossing the road or coming right in front of it. Sensors and deep learning algorithms help a car accomplish this task successfully.

The more data the car’s algorithm gets, the quicker it learns and drives as safely as humans do.

Deep learning Machine learning

Opinions expressed by DZone contributors are their own.

Related

  • Artificial Intelligence (AI) Utilizing Deep Learning Techniques to Enhance ADAS
  • Deep Learning Frameworks Comparison
  • Six Useful Resources for Engineers
  • Exploring Machine Learning Frameworks for Software Developers

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: