DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Last call! Secure your stack and shape the future! Help dev teams across the globe navigate their software supply chain security challenges.

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workloads.

Releasing software shouldn't be stressful or risky. Learn how to leverage progressive delivery techniques to ensure safer deployments.

Avoid machine learning mistakes and boost model performance! Discover key ML patterns, anti-patterns, data strategies, and more.

Related

  • Async Support in Django
  • Python Packages for Validating Database Migration Projects
  • Mistakes That Django Developers Make and How To Avoid Them
  • Designing a Blog Application Using Document Databases

Trending

  • It’s Not About Control — It’s About Collaboration Between Architecture and Security
  • Issue and Present Verifiable Credentials With Spring Boot and Android
  • How to Practice TDD With Kotlin
  • Java Virtual Threads and Scaling
  1. DZone
  2. Data Engineering
  3. Databases
  4. Django vs. SQLAlchemy: Which Python ORM Is Better?

Django vs. SQLAlchemy: Which Python ORM Is Better?

Every developer's use case is different, and Django or SQLAlchemy may be better suited for you based on your specific situation.

By 
Tomer Shay (Shimshi) user avatar
Tomer Shay (Shimshi)
·
Updated Jun. 12, 17 · Opinion
Likes (8)
Comment
Save
Tweet
Share
23.0K Views

Join the DZone community and get the full member experience.

Join For Free

Before going into the difference between Python's ORM frameworks (Django and SQLAlchemy), let's make sure we fully understand the use of ORM frameworks in general.

ORM stands for Object Relational Mapping. Looking at each of these words will explain their use in the real world:

  • Object: This part represents the objects and programming language where the framework is used; for example, Python.
  • Relational: This part represents the RDBMS database you're using (Relational Database Manager System). There are numerous popular relational databases out there, but you're probably usin MSSQL, MySQL, Oracle Database, PostgreSQL, MariaDB, PerconaDB, ir TokuDB. What's common between most relational databases is their relational structures (tables, columns, keys, constraints, etc.).
  • Mapping: This final part represents the bridge and connection between the two previous parts.

The ORM is here to connect between the programming language to the database in order to simplify the process of creating an application that relies on data

Active Record vs. Data Mapper

Django ORM uses the active record implementation. You'll see this implementation in most ORMs. Basically, what it means is that each row in the database is directly mapped to an object in the code and vice versa. ORM frameworks such as Django won't require predefining the schema to use the properties in the code. You just use them, as the framework can understand the structure by looking at the database schema. Also, you can just save the record to the database, as it's mapped to a specific row in the table.

SQLAlchemy uses the data mapper implementation. When using this kind of implementation, there is a separation between the database structure and the object structure (they are not 1:1 as in the active record implementation). In most cases, you'll have to use another persistence layer to keep interacting with the database (for example, to save the object). So you can't just call the save() method as you can when using the active record implementation (which is a con) but on the other hand, your code doesn't have to know the entire relational structure in the database to function, as there is no direct relationship between the code and the database.

So which of them wins this battle? Neither. It depends on what you're trying to accomplish. Itbeliefelieve that if your application is a mostly a CRUD (Create, Read, Update, Delete) application with no hard and complex rules to apply to the relationships between the different data entities, you should use the active record implementation (Django). It will allow you to easily and quickly set up an MVP for your product without any hassle. If you have a lot of "business rules" and restrictions in your applications, you might be better with the data mapper model, as it won't tie you up and force you to think strictly as active record does.

Working With Complex Queries

In some cases, Django and SQLAlchemy can be used together. The main use case I got to see numerous times in the real world is when Django is used for all regular CRUD operations, while SQLAlchemy is used for the more complex queries, usually read-only queries.

For some more information and an example on this aspect, look into BetterWorks engineering blog (we have no affiliation with them what so ever, we just liked their blog post :)).

Primary Key Automatic Generation

Another difference between the two frameworks is that Django can create primary keys automatically for your tables. SQLAlchemy won't do that for you. You'll have to manually create them for each table yourself. It's both a pro and a con; who do you think knows best which primary key will be most suited for your table? It's up to you to decide, according to your team's knowledge and experience.

Autocommit

Django has autocommit on by default, while SQLAlchemy doesn't. It will impact the way you use the framework (transactions, rollbacks, etc.).

Supported Databases

Both Django and SQLAlchemy can be used with MySQL, PostgreSQL, Oracle, and SQLite. If you're using MSSQL, you should go for SQLAlchemy, as it's fully supported by it and you'll find more information and documentation about it.

Learning Curve

It's a common opinion over the web that Django will be a lot easier to learn. Well, it's probably obvious, as it's usually used for less complex use cases. So you should think how much you're willing to invest in learning the framework to receive more flexibility with SQLAlchemy (in case you really need it).

Community Size

Without a doubt, SQLAlchemy has the largest community among Python ORM frameworks. If community is important to you (and I think it should be), SQL Alchemy should be your choice. It doesn't mean though that you won't find any help for other frameworks such as Django. You'll get bug fixes, answers for questions in StackOverflow, and any other help you'll need, but your chances are just higher with SQLAlchemy.

Performance

It would be irresponsible of me to just write "X is faster than Y" here. It would be very hard to get to that conclusion with ORMs, as they have such a variety of features and capabilities, and they are different in each framework. From my experience, the way you use the framework's features will have a large impact on the overall performance of your application's database layer. So my suggestion here is not to choose a framework by its performance, but to learn how to use the framework properly to get the most out of it.

Summary

As in any comparison, I think it's better to leave the decision-making to you, the readers. Each use case is different, and a different technology can be better suited for each situation. Look into the differences specified above and let us know which decision you made.

Database Relational database Django (web framework) Python (language)

Published at DZone with permission of Tomer Shay (Shimshi), DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Async Support in Django
  • Python Packages for Validating Database Migration Projects
  • Mistakes That Django Developers Make and How To Avoid Them
  • Designing a Blog Application Using Document Databases

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!