DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Last call! Secure your stack and shape the future! Help dev teams across the globe navigate their software supply chain security challenges.

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workloads.

Releasing software shouldn't be stressful or risky. Learn how to leverage progressive delivery techniques to ensure safer deployments.

Avoid machine learning mistakes and boost model performance! Discover key ML patterns, anti-patterns, data strategies, and more.

Related

  • All You Need to Know About Apache Spark
  • Efficient Long-Term Trend Analysis in Presto Using Datelists
  • iRODS: An Open-Source Approach to Data Management in Large-Scale Research Environments
  • Unleashing the Power of Cloud Storage With JuiceFS

Trending

  • What Is Plagiarism? How to Avoid It and Cite Sources
  • Apache Doris vs Elasticsearch: An In-Depth Comparative Analysis
  • Infrastructure as Code (IaC) Beyond the Basics
  • Enhancing Security With ZTNA in Hybrid and Multi-Cloud Deployments
  1. DZone
  2. Data Engineering
  3. Big Data
  4. Fundamentals of Big Data Log Analytics

Fundamentals of Big Data Log Analytics

A presentation and slide deck on using several different tools including Graylog Splunk, and TIBCO to analyze log data.

By 
Kai Wähner user avatar
Kai Wähner
DZone Core CORE ·
Feb. 08, 16 · Presentation
Likes (3)
Comment
Save
Tweet
Share
10.0K Views

Join the DZone community and get the full member experience.

Join For Free

In February 2016, I presented a brand new talk at OOP in Munich: “Comparison of Frameworks and Tools for Big Data Log Analytics and IT Operations Analytics”. The focus of the talk is to discuss different open source frameworks, SaaS cloud offerings and enterprise products for analyzing big masses of distributed log events. This topic is getting much more traction these days with the emerging architecture concept of Microservices.

Key Take-Aways

  • Log Analytics enables IT Operations Analytics for Machine Data
  • Correlation of Events is the Key for Added Business Value
  • Log Management is complementary to other Big Data Components

Log Management with Papertrail, ELK Stack, TIBCO LogLogic, Splunk, etc.

Log Management has been a mature concept for many years; used for troubleshooting, root cause analysis, and solving security issues of devices such as web servers, firewalls, routers, databases, etc. In the meantime, it is also used for analyzing applications and distributed deployments using SOA or Microservices architectures.

The slide deck compares different solutions for log management:

  • SaaS Cloud, e.g. Papertrail, Loggly, Sumo Logic
  • Open Source Frameworks, e.g. ELK stack (Logstash, Elasticsearch, Kibana), Graylog
  • Enterprise Products, e.g. TIBCO LogLogic, IBM QRadar, Splunk

Image title

IT Operations Analytics (ITOA) with TIBCO Unity

IT Operations Analytics is a new, very young market growing strongly (100% year-by-year, according to Gartner). In contrary to Log Management, it does not just focus on analyzing historical data, but also enables to make complex correlations of distributed data to allow predictive analytics in (near) real time. TIBCO Unity is a product heading into this direction. You can integrate log data, but also real time events (e.g. via TIBCO Hawk) to enable monitoring, analysis and complex correlation of distributed Microserices.

What about Apache Hadoop versus Log Management and ITOA?

Why not use just Apache Hadoop? You can also store and analyze all data on its cluster! Why not just use Log Collectors (such as Apache Flume) and send data directly to Hadoop without Log Analytics “in the middle”?

Here are some reasons… Log Management and ITOA tools.

  • Are an integrated solution for data analysis (tooling, consulting, support).
  • Are built exactly for these use cases.
  • Involve data indexing, data processing (querying) and data visualization by means of dashboards and other tools out-of-the-box.
  • Offer easy-of-use tooling and allow fast time-to-market / low TCO.

The following graphic shows the different concepts and when they are usually used:

Image title

Having said that, a better Hadoop integration is possible! It might make sense to leverage both together: the great tooling for Log Management, plus the Hadoop storage with very high scalability for really BIG data. For example, TIBCO Unity uses Apache Kafka under the hood to support processing and scaling millions of messages. Thus, integration with Hadoop storage might be possible in a future release…

Slides

Finally, here is my slide deck:

Framework and Product Comparison for Big Data Log Analytics and ITOA from Kai Wähner

As always, I appreciate any questions or feedback!

Big data Analytics hadoop IT Operations Analytics Open source

Opinions expressed by DZone contributors are their own.

Related

  • All You Need to Know About Apache Spark
  • Efficient Long-Term Trend Analysis in Presto Using Datelists
  • iRODS: An Open-Source Approach to Data Management in Large-Scale Research Environments
  • Unleashing the Power of Cloud Storage With JuiceFS

Partner Resources

×

Comments

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: