Function Calling and Agents in Agentic AI
Function calling in agentic AI allows autonomous agents to dynamically execute tasks by invoking specific functions based on reasoning and goals.
Join the DZone community and get the full member experience.
Join For FreeOne of the most exciting innovations in the rapidly advancing field of AI is the development of agentic AI, a new paradigm that focuses on creating intelligent systems capable of performing autonomous tasks with humanlike reasoning and actions.
Among the key concepts driving this field are function calling and the development of AI agents. These elements are paving the way for more sophisticated AI systems that learn from data and actively perform tasks, solve problems, and interact with humans in meaningful ways.
Function Calling in AI
Function calling refers to the ability of an AI system to invoke predefined functions or subroutines to perform specific tasks or calculations. In traditional coding, function calls allow programs to reuse code, modularize complex systems, and achieve a high degree of flexibility. In the context of AI, function calling becomes particularly powerful when integrated with decision-making processes.
Role of Function Calling in Agentic AI
In agentic AI, function calling is not merely about executing static code but involves leveraging the system's internal knowledge and reasoning capabilities to decide when, how, and which function to call. This dynamic decision-making process enables AI agents to adapt to new tasks, learn from their experiences, and even develop new capabilities through interaction with their environment.
Function calling plays a pivotal role in the autonomy of AI agents. By allowing the agent to invoke specific functions based on its reasoning and goals, function calling enables the agent to perform tasks that range from simple actions, such as sending an email or querying a database, to complex sequences of operations, such as navigating a physical environment, coordinating with other agents, or performing multi-step decision-making.
Function Calls and Agents in Action
AutoGen is a programming framework for building multi-agent applications. Below is an example of how AI agents can be built in just a few steps with the help of a small language model and function-calling capabilities.
Prerequisites
- Install Ollama.
- Install Qwen. Run the following command:
Shell
ollama run qwen2.5:0.5b
- Install Autogen Agent Framework. Use the pip command:
Shell
pip install "autogen-agentchat” “autogen-ext[openai]"
Steps
Check if Qwen2 is running.
PS F:\code> ollama run qwen2.5:0.5b
pulling manifest
pulling c5396e06af29... 100% ▕████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 397 MB
pulling 66b9ea09bd5b... 100% ▕████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 68 B
pulling eb4402837c78... 100% ▕████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 1.5 KB
pulling 832dd9e00a68... 100% ▕████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 11 KB
pulling 005f95c74751... 100% ▕████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 490 B
verifying sha256 digest
writing manifest
success
Check if the model is listed.
PS F:\code\agent> ollama ls
NAME ID SIZE MODIFIED
qwen2.5:0.5b a8b0c5157701 397 MB 57 minutes ago
Create two simple functions: sum and diff.
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.messages import TextMessage
from autogen_core import CancellationToken
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def sum(a: int, b: int) -> str:
return f"Sum is {a+b}"
async def diff(a: int, b: int) -> str:
return f"Diff is {a-b}"
Create a model client and agent that uses the Qwen model and can talk to ollama via the base_url.
model_client = OpenAIChatCompletionClient(
model="qwen2.5:0.5b",
base_url= "http://localhost:11434/v1",
api_key="placeholder",
model_info={
"vision": False,
"function_calling": True,
"json_output": False,
"family": "unknown",
},
)
agent = AssistantAgent(
name="assistant",
model_client=model_client,
tools=[sum, diff],
system_message="Use tools to solve tasks.",
)
Add a simple test function that uses function calls. The prompt given is to calculate sum and diff of 2 and 3.
async def assistant_run() -> None:
response = await agent.on_messages(
[TextMessage(content="Calculate sum and diff of two numbers 2 and 3?", source="user")],
cancellation_token=CancellationToken(),
)
print(response.inner_messages)
print("----------------------")
print(response.chat_message)
asyncio.run(assistant_run())
Run the Python code.
PS F:\code\agent> python .\agentchat.py
[ToolCallRequestEvent(source='assistant', models_usage=RequestUsage(prompt_tokens=213, completion_tokens=50), content=[FunctionCall(id='call_a7l6q2pc', arguments='{"a":2,"b":3}', name='sum'), FunctionCall(id='call_xsod2bd5', arguments='{"a":2,"b":3}', name='diff')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='assistant', models_usage=None, content=[FunctionExecutionResult(content='Sum is 5', call_id='call_a7l6q2pc'), FunctionExecutionResult(content='Diff is -1', call_id='call_xsod2bd5')], type='ToolCallExecutionEvent')]
----------------------
source='assistant' models_usage=None content='Sum is 5\nDiff is -1' type='ToolCallSummaryMessage'
As we can see, the predefined functions sum and diff are used to generate output Sum is 5\nDiff is -1
.
FunctionCall(id='call_a7l6q2pc', arguments='{"a":2,"b":3}', name='sum'),
FunctionCall(id='call_xsod2bd5', arguments='{"a":2,"b":3}', name='diff')
Conclusion
Function calling and agents represent two core components of Agentic AI. By combining the flexibility of dynamic function invocation with the autonomy of intelligent decision-making, these systems have the potential to revolutionize industries and transform the way humans interact with technology.
As AI advances, the development of such intelligent agents will open up new possibilities for automation, collaboration, and problem-solving, making the world of agentic AI one of the most exciting frontiers of modern technology.
Opinions expressed by DZone contributors are their own.
Comments