DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. Data
  4. Moving the Decimal Place in a Double

Moving the Decimal Place in a Double

Peter Lawrey user avatar by
Peter Lawrey
·
Nov. 25, 12 · Interview
Like (0)
Save
Tweet
Share
13.07K Views

Join the DZone community and get the full member experience.

Join For Free

 This is taken from a popular answer to the question Moving decimal places over in a double

Question

So I have a double set to equal 1234, I want to move a decimal place over to make it 12.34
So to do this I multiply .1 to 1234 two times, kinda like this
    double x = 1234;
    for(int i = 1; i <= 2; i++)
    {
      x = x*.1;
    }
    System.out.println(x);

This will print the result, "12.340000000000002"
Is there a way, without simply formatting it to two decimal places, to have the double store 12.34 correctly?

Answer

If you use double or float, you should use rounding or expect to see some rounding errors. If you can't do this, use BigDecimal.
The problem you have is that 0.1 is not an exact representation, and by performing the calculation twice, you are compounding that error.
However, 100 can be represented accurately, so try:
double x = 1234;
x /= 100;
System.out.println(x);
which prints:
12.34
This works because Double.toString(d) performs a small amount of rounding on your behalf, but it is not much. If you are wondering what it might look like without rounding:
System.out.println(new BigDecimal(0.1));
System.out.println(new BigDecimal(x));
prints
0.100000000000000005551115123125782702118158340454101562
12.339999999999999857891452847979962825775146484375


In short, rounding is unavoidable for sensible answers in floating point whether you are doing this explicitly or not.

Note: x / 100 and x * 0.01 are not exactly the same when it comes to rounding error. This is because the round error for the first expression depends on the values of x, whereas the 0.01 in the second has a fixed round error.
for(int i = 0; i < 200; i++) {
    double d1 = (double) i / 100;
    double d2 = i * 0.01;
    if (d1 != d2)
        System.out.println(d1 + " != "+d2);
}
prints
0.35 != 0.35000000000000003
0.41 != 0.41000000000000003
0.47 != 0.47000000000000003
0.57 != 0.5700000000000001
0.69 != 0.6900000000000001
0.7 != 0.7000000000000001
0.82 != 0.8200000000000001
0.83 != 0.8300000000000001
0.94 != 0.9400000000000001
0.95 != 0.9500000000000001
1.13 != 1.1300000000000001
1.14 != 1.1400000000000001
1.15 != 1.1500000000000001
1.38 != 1.3800000000000001
1.39 != 1.3900000000000001
1.4 != 1.4000000000000001
1.63 != 1.6300000000000001
1.64 != 1.6400000000000001
1.65 != 1.6500000000000001
1.66 != 1.6600000000000001
1.88 != 1.8800000000000001
1.89 != 1.8900000000000001
1.9 != 1.9000000000000001
1.91 != 1.9100000000000001




Data Types

Published at DZone with permission of Peter Lawrey, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Easy Smart Contract Debugging With Truffle’s Console.log
  • Java Development Trends 2023
  • Spring Cloud: How To Deal With Microservice Configuration (Part 1)
  • How To Create and Edit Excel XLSX Documents in Java

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: