Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Neo4j: LOAD CSV - Handling Empty Columns

DZone's Guide to

Neo4j: LOAD CSV - Handling Empty Columns

· Java Zone
Free Resource

Build vs Buy a Data Quality Solution: Which is Best for You? Gain insights on a hybrid approach. Download white paper now!

A common problem that people encounter when trying to import CSV files into Neo4j using Cypher’s LOAD CSV command is how to handle empty or ‘null’ entries in said files.

For example let’s try and import the following file which has 3 columns, 1 populated, 2 empty:

$ cat /tmp/foo.csv
a,b,c
mark,,
load csv with headers from "file:/tmp/foo.csv" as row
MERGE (p:Person {a: row.a})
SET p.b = row.b, p.c = row.c
RETURN p

When we execute that query we’ll see that our Person node has properties ‘b’ and ‘c’ with no value:

==> +-----------------------------+
==> | p                           |
==> +-----------------------------+
==> | Node[5]{a:"mark",b:"",c:""} |
==> +-----------------------------+
==> 1 row
==> Nodes created: 1
==> Properties set: 3
==> Labels added: 1
==> 26 ms

That isn’t what we want – we don’t want those properties to be set unless they have a value.

TO achieve this we need to introduce a conditional when setting the ‘b’ and ‘c’ properties. We’ll assume that ‘a’ is always present as that’s the key for our Person nodes.

The following query will do what we want:

load csv with headers from "file:/tmp/foo.csv" as row
MERGE (p:Person {a: row.a})
FOREACH(ignoreMe IN CASE WHEN trim(row.b) <> "" THEN [1] ELSE [] END | SET p.b = row.b)
FOREACH(ignoreMe IN CASE WHEN trim(row.c) <> "" THEN [1] ELSE [] END | SET p.c = row.c)
RETURN p

Since there’s no if or else statements in cypher we create our own conditional statement by using FOREACH. If there’s a value in the CSV column then we’ll loop once and set the property and if not we won’t loop at all and therefore no property will be set.

==> +-------------------+
==> | p                 |
==> +-------------------+
==> | Node[4]{a:"mark"} |
==> +-------------------+
==> 1 row
==> Nodes created: 1
==> Properties set: 1
==> Labels added: 1

Build vs Buy a Data Quality Solution: Which is Best for You? Maintaining high quality data is essential for operational efficiency, meaningful analytics and good long-term customer relationships. But, when dealing with multiple sources of data, data quality becomes complex, so you need to know when you should build a custom data quality tools effort over canned solutions. Download our whitepaper for more insights into a hybrid approach.

Topics:

Published at DZone with permission of Mark Needham, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}