{{announcement.body}}
{{announcement.title}}

# R: Filtering data frames by column type ('x' must be numeric)

DZone 's Guide to

# R: Filtering data frames by column type ('x' must be numeric)

· Big Data Zone ·
Free Resource

Comment (0)

Save
{{ articles[0].views | formatCount}} Views

I’ve been working through the exercises from An Introduction to Statistical Learning and one of them required you to create a pair wise correlation matrix of variables in a data frame.

The exercise uses the ‘Carseats’ data set which can be imported like so:

```> install.packages("ISLR")
> library(ISLR)
Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban  US
1  9.50       138     73          11        276   120       Bad  42        17   Yes Yes
2 11.22       111     48          16        260    83      Good  65        10   Yes Yes
3 10.06       113     35          10        269    80    Medium  59        12   Yes Yes
4  7.40       117    100           4        466    97    Medium  55        14   Yes Yes
5  4.15       141     64           3        340   128       Bad  38        13   Yes  No
6 10.81       124    113          13        501    72       Bad  78        16    No Yes```

filter the categorical variables from a data frame and

If we try to run the ‘cor‘ function on the data frame we’ll get the following error:

```> cor(Carseats)
Error in cor(Carseats) : 'x' must be numeric```

As the error message suggests, we can’t pass non numeric variables to this function so we need to remove the categorical variables from our data frame.

But first we need to work out which columns those are:

```> sapply(Carseats, class)
Sales   CompPrice      Income Advertising  Population       Price   ShelveLoc         Age   Education
"numeric"   "numeric"   "numeric"   "numeric"   "numeric"   "numeric"    "factor"   "numeric"   "numeric"
Urban          US
"factor"    "factor"```

We can see a few columns of type ‘factor’ and luckily for us there’s a function which will help us identify those more easily:

```> sapply(Carseats, is.factor)
Sales   CompPrice      Income Advertising  Population       Price   ShelveLoc         Age   Education
FALSE       FALSE       FALSE       FALSE       FALSE       FALSE        TRUE       FALSE       FALSE
Urban          US
TRUE        TRUE```

Now we can remove those columns from our data frame and create the correlation matrix:

```> cor(Carseats[sapply(Carseats, function(x) !is.factor(x))])
Sales   CompPrice       Income  Advertising   Population       Price          Age    Education
Sales        1.00000000  0.06407873  0.151950979  0.269506781  0.050470984 -0.44495073 -0.231815440 -0.051955242
CompPrice    0.06407873  1.00000000 -0.080653423 -0.024198788 -0.094706516  0.58484777 -0.100238817  0.025197050
Income       0.15195098 -0.08065342  1.000000000  0.058994706 -0.007876994 -0.05669820 -0.004670094 -0.056855422
Advertising  0.26950678 -0.02419879  0.058994706  1.000000000  0.265652145  0.04453687 -0.004557497 -0.033594307
Population   0.05047098 -0.09470652 -0.007876994  0.265652145  1.000000000 -0.01214362 -0.042663355 -0.106378231
Price       -0.44495073  0.58484777 -0.056698202  0.044536874 -0.012143620  1.00000000 -0.102176839  0.011746599
Age         -0.23181544 -0.10023882 -0.004670094 -0.004557497 -0.042663355 -0.10217684  1.000000000  0.006488032
Education   -0.05195524  0.02519705 -0.056855422 -0.033594307 -0.106378231  0.01174660  0.006488032  1.000000000```
Be Sociable, Share!
Topics:

Comment (0)

Save
{{ articles[0].views | formatCount}} Views

Published at DZone with permission of Mark Needham , DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.