Over a million developers have joined DZone.

Securing JAX-RS Endpoints with JWT

DZone's Guide to

Securing JAX-RS Endpoints with JWT

Securing REST endpoints is an important part of any REST development cycle. Learn how to do just that using JWT in this post.

· Web Dev Zone
Free Resource

Discover how to focus on operators for Reactive Programming and how they are essential to react to data in your application.  Brought to you in partnership with Wakanda

(Download the code here.)

In this blog post, I’ll show you how to use the JJWT library to issue and verify JSON Web Tokens with JAX-RS endpoints. The idea is to allow an invocation when no token is needed, but also, be able to reject an invocation when a JWT token is explicitly needed.

Let’s say we have a REST Endpoint with several methods: methods that can be invoked directly, and methods that can be invoked only if the caller is authenticated. There are several ways to authenticate, authorize, encrypt… REST endpoints invocations. Some complex, some easier. Here I will use JWT, or JSON Web Token. The idea is that when authorization is needed, the caller needs to get a JWT token and then pass it around. I won’t go into too much details on JSon Web Token as you can find plenty of resources. I just want to show you some code so you see how easy it is to setup with JAX-RS.

Use Case

In this example we have two REST Endpoints:

  • EchoEndpoint: this is just an Echo endpoint with two methods: one accessible by everyone (echo), another one accessible only if you pass a valid JSON Web Token (echoWithJWTToken), meaning you identified first using UserEndpoint
  • UserEndpoint: this endpoint returns information about the users of the application(the User JPA entity), but more important, has a method to authenticate (authenticateUser) using login/password. Once authenticate, you get aJSON Web Token (and can then pass it around)


Securing an Invocation

Below is the code of the EchoEndpoint. As you can see, this basic JAX-RS Endpoint has two GET methods both returning a String:

  • one on /echo accessible by everyone
  • one on /echo/jwt only accessible if the client passes a token. How do we check that the token is needed? Using the JWTTokenNeeded name binding and the JWTTokenNeededFilter (see below)
public class EchoEndpoint {

    public Response echo(@QueryParam("message") String message) {
        return Response.ok().entity(message == null ? "no message" : message).build();

    public Response echoWithJWTToken(@QueryParam("message") String message) {
        return Response.ok().entity(message == null ? "no message" : message).build();

Filter Checking the JSon Web Token

The magic hides behind JWTTokenNeeded. Well, not really, it hides behind the JWTTokenNeededFilter. JWTTokenNeeded is just a JAX-RS name binding (think of it as a CDI interceptor binding), so it’s just an annotation that binds to a filter.

@Target({TYPE, METHOD})
public @interface JWTTokenNeeded {

The filter itself is the one doing all the work. It implements ContainerRequestFilter and therefore allows us to check the request headers. Basically, when the EchoEndpoint::echoWithJWTToken method is invoked, the runtime intercepts the invocation, and does the following:

  1. Gets the HTTP Authorization header from the request and checks for the JSon Web Token (the Bearer string)
  2. It validates the token (using the JJWT library)
  3. If the token is valid, fine, the echoWithJWTToken method is invoked
  4. If the token is invalid, a 401 Unauthorized is sent to the client
public class JWTTokenNeededFilter implements ContainerRequestFilter {

    private KeyGenerator keyGenerator;

    public void filter(ContainerRequestContext requestContext) throws IOException {

        // Get the HTTP Authorization header from the request
        String authorizationHeader = requestContext.getHeaderString(HttpHeaders.AUTHORIZATION);

        // Extract the token from the HTTP Authorization header
        String token = authorizationHeader.substring("Bearer".length()).trim();

        try {

            // Validate the token
            Key key = keyGenerator.generateKey();
            logger.info("#### valid token : " + token);

        } catch (Exception e) {
            logger.severe("#### invalid token : " + token);

As you can see on line 22, the JJWT library is very simple as it checks if the token is valid in only 1 line. Validation is made depending on a Key. Here I just use a String to make the example easy to understand, but it could be something safer, like a keystore.

Issuing a JSON Web Token

Ok, now we have a filter that checks that the token is passed in the HTTP header. But how is this token issued? The user needs to log in, invoking an HTTP POST and passing a login and password (here, log in and password are passed in clear for sake of simplicity, but this part should use HTTPs). Once authenticated, JJWT is used to create a token based on the users’ login and the secret key (the same key used in JWTTokenNeededFilter).

public class UserEndpoint {

    private KeyGenerator keyGenerator;

    public Response authenticateUser(@FormParam("login") String login,
                                     @FormParam("password") String password) {
        try {

            // Authenticate the user using the credentials provided
            authenticate(login, password);

            // Issue a token for the user
            String token = issueToken(login);

            // Return the token on the response
            return Response.ok().header(AUTHORIZATION, "Bearer " + token).build();

        } catch (Exception e) {
            return Response.status(UNAUTHORIZED).build();

    private String issueToken(String login) {
        Key key = keyGenerator.generateKey();
        String jwtToken = Jwts.builder()
                .setIssuedAt(new Date())
                .signWith(SignatureAlgorithm.HS512, key)
        return jwtToken;

Notice that the JSon Web Token sets a few claims (in the issueToken method): subject (the principal’s login), an issuer (the one who issued the token), an issued date, a signing algorithm, and very important, an expiration date for the token. Now, the client is authenticated, and it has a token that it needs to pass to be able to invoke the Echo endpoint again.

The token looks like this (using the JWT debugger):

JSon Web Token

Putting It All Together

Now that you have all the pieces, let’s put them together.

  1. First, the client invokes the EchoEndpoint with no token. This invocation is intercepted by the filter that checks that there is no token and…
  2. returns a 401 Unauthorized to the client
  3. The client needs to authenticate issuing an HTTP POST and passing a login/password
  4. After authentication, a JSon Web Token is returned to the client. It is encrypted using the user’s login and a key.
  5. The user re-invokes the same EchoEndpoint but this time with a token. The same filter intercepts the call, checks the token is valid, and…
  6. allows the EchoEndpoint invocation

Testing the Interaction

Thanks to Arquillian we can easily test this entire integration. Here I’ve slightly simplified the code (get it all on GitHub) but the idea is that this test class:

  1. First, invokes the EchoEndpoint with no token and gets a 401 Unauthorized
  2. Then it creates a user…
  3. So it can then authenticate the user and get the token. As you can see, I’m using JJWT to check that the token has the needed claims.
  4. Then, it invokes the same EchoEndpoint but this time passing the token in the HTTP header, and this time gets a 200 OK.
public class JWTEchoEndpointTest {

    private static final User TEST_USER = new User("id", "last name", "first name", "login", "password");
    private static String token;
    private Client client;
    private WebTarget echoEndpointTarget;
    private WebTarget userEndpointTarget;

    private URI baseURL;

    public void initWebTarget() {
        client = ClientBuilder.newClient();
        echoEndpointTarget = client.target(baseURL).path("api/echo/jwt");
        userEndpointTarget = client.target(baseURL).path("api/users");

    // ======================================
    // =            Test methods            =
    // ======================================

    public void invokingEchoShouldFailCauseNoToken() throws Exception {
        Response response = echoEndpointTarget.request(TEXT_PLAIN).get();
        assertEquals(401, response.getStatus());

    public void shouldCreateAUser() throws Exception {
        Response response = userEndpointTarget.request(APPLICATION_JSON_TYPE).post(Entity.entity(TEST_USER, APPLICATION_JSON_TYPE));
        assertEquals(201, response.getStatus());

    public void shouldLogUserIn() throws Exception {
        Form form = new Form();
        form.param("login", TEST_USER.getLogin());
        form.param("password", TEST_USER.getPassword());

        Response response = userEndpointTarget.path("login").request(MediaType.APPLICATION_JSON_TYPE).post(Entity.entity(form, MediaType.APPLICATION_FORM_URLENCODED_TYPE));

        assertEquals(200, response.getStatus());
        token = response.getHeaderString(HttpHeaders.AUTHORIZATION);

        // Check the JWT Token
        String justTheToken = token.substring("Bearer".length()).trim();
        Key key = new SimpleKeyGenerator().generateKey();
        assertEquals(1, Jwts.parser().setSigningKey(key).parseClaimsJws(justTheToken).getHeader().size());
        assertEquals("HS512", Jwts.parser().setSigningKey(key).parseClaimsJws(justTheToken).getHeader().getAlgorithm());
        assertEquals(4, Jwts.parser().setSigningKey(key).parseClaimsJws(justTheToken).getBody().size());
        assertEquals("login", Jwts.parser().setSigningKey(key).parseClaimsJws(justTheToken).getBody().getSubject());
        assertEquals(baseURL.toString().concat("api/users/login"), Jwts.parser().setSigningKey(key).parseClaimsJws(justTheToken).getBody().getIssuer());

    public void invokingEchoShouldSucceedCauseToken() throws Exception {
        Response response = echoEndpointTarget.request(TEXT_PLAIN).header(HttpHeaders.AUTHORIZATION, token).get();
        assertEquals(200, response.getStatus());
        assertEquals("no message", response.readEntity(String.class));


In this blog, I wanted to show you how easy it is to issue and validate a JSON Web Token with JAX-RS. Here I’m using the external JJWT library as this is not standard in JAX-RS. I find JJWT easy to use but you can find other libraries that do more or less the same (jose.4.j, Nimbus or Java JWT). I didn’t use any security for authentication (security is complex and not very portable in Java EE) so the login/password are not encrypted and no realm is setup.

Download the code, give it a try and leave some comments.

Learn how divergent branches can appear in your repository and how to better understand why they are called “branches".  Brought to you in partnership with Wakanda

endpoints ,jwt ,json web token ,jax-rs ,token ,rest ,library ,secure ,code

Published at DZone with permission of Antonio Goncalves, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.


Dev Resources & Solutions Straight to Your Inbox

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.


{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}