DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Because the DevOps movement has redefined engineering responsibilities, SREs now have to become stewards of observability strategy.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Related

  • Data Persistence: Keeping Data Safe in an Ever-Changing Digital World
  • Pydantic and Elasticsearch: Dynamic Couple for Data Management
  • Data Governance Is Ineffective Without Automation
  • Predicting the Future of Data Science

Trending

  • Introducing Graph Concepts in Java With Eclipse JNoSQL, Part 2: Understanding Neo4j
  • IoT and Cybersecurity: Addressing Data Privacy and Security Challenges
  • Prioritizing Cloud Security Risks: A Developer's Guide to Tackling Security Debt
  • Introduction to Retrieval Augmented Generation (RAG)
  1. DZone
  2. Data Engineering
  3. Data
  4. What Is Data Mapping?

What Is Data Mapping?

A high-level but informative discussion of the main concepts behind data mapping, how it can benefit your team, and the challenges you may face.

By 
Garrett Alley user avatar
Garrett Alley
·
Jan. 31, 19 · Opinion
Likes (3)
Comment
Save
Tweet
Share
15.0K Views

Join the DZone community and get the full member experience.

Join For Free

It’s no secret that collecting data from websites, mobile devices, customers, vendors, or other sources is key to surviving today’s super competitive business environment. These data points are essential to creating a comprehensive and detailed view of your business, with the goal of uncovering hidden opportunities to gain a competitive advantage.

But data is only valuable if you have a way to make sense of it, and aggregating information from disparate, variable sources can lead to a number of challenges. For example, what appears as one field in one system needs to appear correctly in another field in another system, if you’re going to get the most accuracy and usefulness out of your own data.

Adequate data mapping is the preemptive solution to a potentially damaging problem.

Data Mapping Defined

Data mapping is a necessary component of the larger processes of data migration and data integration. It’s a mechanism that matches fields from data sources (system A) to the target fields in a data warehouse or other storage repository (system B). Fields can be names, phone numbers, emails, URLs, financial amounts, or any number of other inputs you need to create and capture for querying and reporting purposes.

At a time when organizations have vastly more data sources, types, and formats to work with than ever before, it’s especially important to address data mapping as part of your overall data strategy.

Benefits of Data Mapping

Data mapping is essentially a way to surface and prevent issues ahead of time before they create bigger problems later. For example, two critical data sources may provide information in different formats. And those formats — either one or both — may be incompatible with the way a data destination is configured, increasing the danger of data getting lost, duplicated, or simply incomplete. Any of those outcomes will have a negative impact during the data analysis phase.

But data mapping neutralizes the potential for data errors and mismatches, aids in the data standardization process, and makes intended data destinations clearer and easier to understand.

Quality data achieved through a data mapping process enables effective data analysis. And effective data analysis allows your business to make smart decisions with the speed and confidence needed in today’s market.

Challenges With Data Mapping

Here are a few of the major challenges that can arise with data mapping:

  • Inaccuracy. Any process undertaken by humans can turn into a liability since the potential for errors and misinformed decisions is so high. Inaccurate, duplicate, or otherwise decayed data has little use to the various teams in your organization as it can provide false insights that take the company further from its goals, not closer.
  • Time-wasting. In-house teams already have enough responsibility on their plates. Tasking them with mapping data means time spent double-checking and re-working scripts and schemas to approach a high level of accuracy and certainty. And if fields are mapped incorrectly, it can result in significant data loss and even more re-work.
  • Changes. Rarely can you "set it and forget it" with a data map. Changes can occur at any time — to standards, reporting requirements, software processes, and systems — which makes any prior data map obsolete.

Methods for Data Mapping

As with other aspects of data strategy and operations, organizations are faced with a choice when it comes to data mapping: manually do it themselves, or engage third-party services to do it for them. Data mapping tools and processes run the gamut from on-site to in the cloud. Here are the most common methods for data mapping:

  • On-premise. Data processes that happen on site can feel more secure, accessible, and controlled. But unless you need extremely fast access to your own data, on-premise data mapping is often too unwieldy and cost prohibitive in the long term due to the purchase and upkeep of hardware, software, and other equipment.

  • Open source. On the other hand, open source data mapping tools can be quite cost effective. Using the latest code bases, these tools are both reliable and efficient. But they still require a level of knowledge and hand-coding to be able to use effectively.

  • Cloud-based. When it comes to meeting the needs of today’s organizations, cloud-based data mapping tools fit the bill since they are built to be fast, flexible, and scalable. These tools can easily adapt to changing schemas without slowing down or losing information and are generally backed up with expert setup and support.

Data (computing) Data mapping

Published at DZone with permission of Garrett Alley, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Data Persistence: Keeping Data Safe in an Ever-Changing Digital World
  • Pydantic and Elasticsearch: Dynamic Couple for Data Management
  • Data Governance Is Ineffective Without Automation
  • Predicting the Future of Data Science

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!