Your First Hadoop MapReduce Job
Hadoop MapReduce is a YARN-based system for parallel processing of large data sets. In this article, learn to quickly start writing the simplest MapReduce job.
Join the DZone community and get the full member experience.
Join For FreeHadoop MapReduce is a YARN-based system for parallel processing of large data sets. If you are new to Hadoop, first explore the Hadoop site. In this article, I'll help you quickly start writing the simplest MapReduce job. This famous WordCount job is the first that many Hadoop beginners write: a simple application that counts the number of occurrences of each word in a given input set.
You can check out the source code directly from this small GitHub project I created.
Step 1: Install and Start the Hadoop Server
In this tutorial, I will assume your Hadoop installation is ready.
Start Hadoop:
amresh@ubuntu:/home/amresh$ cd /usr/local/hadoop/ amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/start-all.sh amresh@ubuntu:/usr/local/hadoop-1.0.2$ sudo jps 6098 JobTracker 8024 Jps 5783 DataNode 5997 SecondaryNameNode 5571 NameNode 6310 TaskTracker
(Make sure NameNode, DataNode, JobTracker, TaskTracker, and SecondaryNameNode are running.)
Step 2: Write the MapReduce Job for WordCount
Map.java (Mapper Implementation)
package com.impetus.code.examples.hadoop.mapred.wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; public class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } }
Reduce.java (Reducer Implementation)
package com.impetus.code.examples.hadoop.mapred.wordcount; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; public class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } }
WordCount.java (Job)
package com.impetus.code.examples.hadoop.mapred.wordcount; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
Step 3: Compile and Create Jar File
I prefer Maven for building my Java project. You can find the POM file here and add it to your Java project. This will make sure you have your Hadoop Jar dependency ready.
Just run the following:
amresh@ubuntu:/usr/local/hadoop-1.0.2$ cd ~/development/hadoop-examples amresh@ubuntu:/home/amresh/development/hadoop-examples$ mvn clean install
Step 4: Create Input Files To Copy Words From
amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -mkdir ~/wordcount/input amresh@ubuntu:/usr/local/hadoop-1.0.2$ sudo vi file01 (Hello World Bye World) amresh@ubuntu:/usr/local/hadoop-1.0.2$ sudo vi file02 (Hello Hadoop Goodbye Hadoop) amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -copyFromLocal file01 /home/amresh/wordcount/input/ amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -copyFromLocal file02 /home/amresh/wordcount/input/ amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -ls /home/amresh/wordcount/input/ Found 2 items -rw-r--r-- 1 amresh supergroup 0 2012-05-08 14:51 /home/amresh/wordcount/input/file01 -rw-r--r-- 1 amresh supergroup 0 2012-05-08 14:51 /home/amresh/wordcount/input/file02
Step 5: Run the MapReduce Job You Wrote
amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop jar ~/development/hadoop-examples/target/hadoop-examples-1.0.jar com.impetus.code.examples.hadoop.mapred.wordcount.WordCount /home/amresh/wordcount/input /home/amresh/wordcount/output amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -ls /home/amresh/wordcount/output/ Found 3 items -rw-r--r-- 1 amresh supergroup 0 2012-05-08 15:23 /home/amresh/wordcount/output/_SUCCESS drwxr-xr-x - amresh supergroup 0 2012-05-08 15:22 /home/amresh/wordcount/output/_logs -rw-r--r-- 1 amresh supergroup 41 2012-05-08 15:23 /home/amresh/wordcount/output/part-00000 amresh@ubuntu:/usr/local/hadoop-1.0.2$ bin/hadoop dfs -cat /home/amresh/wordcount/output/part-00000 Bye 1 Goodbye 1 Hadoop 2 Hello 2 World 2
Opinions expressed by DZone contributors are their own.
Comments