DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
The Latest "Software Integration: The Intersection of APIs, Microservices, and Cloud-Based Systems" Trend Report
Get the report
  1. DZone
  2. Data Engineering
  3. Big Data
  4. The Dark Side of Big Data: Pseudo-Science & Fooled By Randomness

The Dark Side of Big Data: Pseudo-Science & Fooled By Randomness

Wille Faler user avatar by
Wille Faler
·
Mar. 09, 12 · Interview
Like (0)
Save
Tweet
Share
12.62K Views

Join the DZone community and get the full member experience.

Join For Free

Over the last couple of months I have read up on volumes of Technical Analysis (“TA”) information, I have back tested probably hundreds of automated trading strategies against massive amounts of data, both exchange intraday- and tick data, as well as other sources. Some of these strategies have been massively profitable in back testing, others not so much. 

Some of the TA patterns, I’ve discarded before they even left the book, because they did not stand up to any sort of scientific scrutiny because they lacked a clear predictive thesis, where riddled with forward-looking bias (“Head and Shoulders patterns”), and in some cases where just plain bulls**t (“Elliott Wave Principle” comes to mind).

The outcomes of my testing has made me think about the implications of large scale data analysis in general: it is very easy to get fooled by randomness. In many cases in my testing results have been amazing, but I cannot come up with a plausible causal explanation as to why, and when I gently nudge the parameters just ever so slightly, outcomes can look entirely different. 

Taking a step back from the data, looking at it in a larger perspective, I’m inclined to conclude that if data across multiple parameter variations looks like a random walk and lacks a plausible causal explanation, then it is a random walk.

If I cannot say “X is caused by A and B”, I’m inclined to believe that the actual reason is “X is the result because A and B fit the historical data D, but may not do so in the future”.

And herein lies the crux of the matter: how many data scientists are inclined to take a step back, rather than just assume that there is a pattern there? How many are prepared to do so if their livelihood is largely based on them finding patterns, rather than discarding them because they do not hold up to deeper scrutiny? I’d say very few.

My conclusion to this is that the age of Big Data will see a radical increase of pseudo-scientific “discoveries”, driven out of an interest in announcing new great “patterns”. This pseudo-science will pervade both academia, public sector and private sector, God knows I’ve seen a fair number of academic research papers already that simply do not hold if you investigate their thesis in a deeper manner.

I suspect we will arrive at a point much like with any new technology whereby people will tire of the claims made by “Big Data Scientists”, because at least half of what they say will have been proven to be hokey and pseudo-science in the pursuit of being able to make even more outlandish claims in a game of one-upping the competition. Some of this will be driven by malice and self-interest, but I suspect in equal parts it will be driven by ignorance and perverted incentives putting blinders on people in the business.

Big data Data science

Published at DZone with permission of Wille Faler, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Stop Using Spring Profiles Per Environment
  • Introduction to Spring Cloud Kubernetes
  • Tracking Software Architecture Decisions
  • Building a Real-Time App With Spring Boot, Cassandra, Pulsar, React, and Hilla

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: