DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Because the DevOps movement has redefined engineering responsibilities, SREs now have to become stewards of observability strategy.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Related

  • Scaling in Practice: Caching and Rate-Limiting With Redis and Next.js
  • Addressing the Problem of Drift Detection and Drift Cause Analysis
  • Performance and Scalability Analysis of Redis and Memcached
  • Optimizing Cloud Spend in the New Era: Strategies and Frameworks for Cost Management

Trending

  • The End of “Good Enough Agile”
  • MCP Servers: The Technical Debt That Is Coming
  • Event Driven Architecture (EDA) - Optimizer or Complicator
  • Rust, WASM, and Edge: Next-Level Performance
  1. DZone
  2. Software Design and Architecture
  3. Cloud Architecture
  4. Distributed Caching on Cloud

Distributed Caching on Cloud

In this blog, we will explore distributed caching on the cloud and why it is useful for environments with high data volume and load.

By 
Vishal Padghan user avatar
Vishal Padghan
·
Jan. 13, 23 · Tutorial
Likes (1)
Comment
Save
Tweet
Share
3.6K Views

Join the DZone community and get the full member experience.

Join For Free

Distributed caching is an important aspect of cloud-based applications, be it for on-premises, public, or hybrid cloud environments. It facilitates incremental scaling, allowing the cache to grow and incorporate the data growth. In this blog, we will explore distributed caching on the cloud and why it is useful for environments with high data volume and load. This blog will cover the following:

  • Traditional Caching Challenges
  • What is Distributed Caching
  • Benefits of Distributed Caching on cloud 
  • Recommended Distributed Caching Database Tools
  • Ways to Deploy Distributed Caching on Hybrid Cloud

Traditional Caching Challenges

Traditional caching servers are usually deployed with limited storage and CPU speed. Often these caching infrastructures reside in data centers that are on-premises. I am referring to a non-distributed caching server. Traditional distributed caching comes with numerous challenges:

  • Hard-to-scale cache storage and CPU speed on non-cloud node servers.
  • High operational cost to manage infrastructure and unutilized hardware resources.
  • Inability to scale and manage traditional distributed caching (since it is non-containerized).
  • Possibility of servers crashing if client load is higher than actual. 
  • Chances of stale data during programmatic sync-up with multiple data center servers. 
  • Slow data synchronization between servers and various data centers.

What Is Distributed Caching?

Caching is a technique to store the state of data outside of the main storage and store it in high-speed memory to improve performance. In a microservices environment, all apps are deployed with their multiple instances across various servers/containers on the hybrid cloud. A single caching source is needed in a multicluster Kubernetes environment on the cloud to persist data centrally and replicate it on its own caching cluster. It will serve as a single point of storage to cache data in a distributed environment.

Benefits of Distributed Caching on Cloud

  • Periodic caching of frequently used read REST APIs' response ensures faster API read performance. 
  • Reduced database network calls by accessing cached data directly from distributed caching databases. 
  • Resilience and fault tolerance by maintaining multiple copies of data at various caching databases in a cluster. 
  • High availability by auto-scaling the cache databases based on load or client requests. 
  • Storage of secret session tokens like JSON Web Token (ID/JWT) for authentication and authorization purposes for microservices apps containers. 
  • Faster read and write access in-memory if it's used as a dedicated database solution for high-load mission-critical applications. 
  • Avoid unnecessary roundtrip data calls to persistent databases. 
  • Auto-scalable cloud infrastructure deployment. 
  • Containerization of distributed caching libraries/solutions. 
  • Consistent read data from any synchronized connected caching data centers. 
  • Minimal to no outage, high availability of caching data. 
  • Faster data synchronization between caching data servers.

Recommended Distributed Caching Database Tools

The following are popular industry-recognized caching servers:

  • Redis 
  • Memcached 
  • GemFire  
  • Hazelcast databases

Redis

It's one of the most popular distributed caching services. It supports different data structures. It's an open-source, in-memory data store used by millions of developers as a database, cache, streaming engine, and message broker. It also has an enterprise version. It can be deployed in containers on private, public, and hybrid clouds, providing consistent and faster data synchronization between different data centers. 

Memcached

It is an open-source, high-performance, distributed memory object caching system. It is generic in nature but intended for use in speeding up dynamic web applications by alleviating database load. Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from the results of database calls, API calls, or page rendering. Memcached is simple yet powerful. Its simple design promotes easy, quick deployment and development. It solves many data-caching problems, and the API is available in various commonly used languages. 

GemFire

It provides distributed in-memory data-grid cache powered by Apache Geode open source. It scales data services on demand to support high performance. It's a key-value store that performs read and write operations at fast speeds. In addition, it offers highly available parallel message queues, continuous availability, and an event-driven architecture to scale dynamically with no downtime. 

It provides multisite replication. As data size requirements increase to support high-performance, real-time apps, they can scale linearly with ease. Applications get low-latency responses to data-access requests and always return fresh data. It maintains transaction integrity across distributed nodes and supports high-concurrency, low-latency data operations of the application. It also provides node failover and cross-data center or multi-datacenter replication to ensure applications are resilient, whether on-premises or in the cloud.

Hazelcast

Hazelcast is a distributed computation and storage platform for consistent low-latency querying, aggregation, and stateful computation against event streams and traditional data sources. It allows you to quickly build resource-efficient, real-time applications. You can deploy it at any scale, from small-edge devices to a large cluster of cloud instances. A cluster of Hazelcast nodes share both the data storage and computational load, which can dynamically scale up and down. When you add new nodes to the cluster, the data is automatically rebalanced across the cluster. The computational tasks (jobs) that are currently in a running state snapshot their state and scale with a processing guarantee. 

Ways to Deploy Distributed Caching on Hybrid Cloud

These are recommended ways to deploy, and setup distributed caching, be it on the public cloud or hybrid cloud:

  • Open source distributed caching on traditional VM instances. 
  • Open source distributed caching on Kubernetes container. I would recommend deploying on a Kubernetes container for high availability, resiliency, scalability, and faster performance. 
  • Enterprise commercial off-the-shelf distributed caching deployment on VM and container. I would recommend the enterprise version because it will provide additional features and support. 
  • The public cloud offers managed services of distributed caching for open-source and enterprise tools like Redis, Hazelcast and Memcached, etc. 
  • Caching servers can be deployed on multiple sources like on-premises and public cloud together, public servers, or only one public server in different availability zones.

Conclusion 

Distributed caching is now a de-facto requirement for distributed microservices applications in a distributed deployment environment on a hybrid cloud. It addresses concerns in important use cases like maintaining user sessions when cookies are disabled on the web browser, improving API query read performance, avoiding operational costs and database hits for the same type of requests, managing secret tokens for authentication and authorization, etc. 

Distributed cache syncs data on hybrid clouds automatically without any manual operation and always gives the latest data. I would recommend industry-standard distributed caching solutions like Redis, Hazelcast, and Memcached. We need to choose a better distributed caching technology in the cloud based on use cases.

Cache (computing) Cloud Cloud management Hazelcast Memcached microservice Redis (company)

Published at DZone with permission of Vishal Padghan. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Scaling in Practice: Caching and Rate-Limiting With Redis and Next.js
  • Addressing the Problem of Drift Detection and Drift Cause Analysis
  • Performance and Scalability Analysis of Redis and Memcached
  • Optimizing Cloud Spend in the New Era: Strategies and Frameworks for Cost Management

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!