DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

How does AI transform chaos engineering from an experiment into a critical capability? Learn how to effectively operationalize the chaos.

Data quality isn't just a technical issue: It impacts an organization's compliance, operational efficiency, and customer satisfaction.

Are you a front-end or full-stack developer frustrated by front-end distractions? Learn to move forward with tooling and clear boundaries.

Developer Experience: Demand to support engineering teams has risen, and there is a shift from traditional DevOps to workflow improvements.

Related

  • Profiling Big Datasets With Apache Spark and Deequ
  • Useful Tips and Tricks for Data Scientists
  • Data Analytics Trends To Watch in 2024
  • Simplify Big Data Analytics With AirMettle

Trending

  • The Synergy of Security and Development: Integrating Threat Models With DevOps
  • Zero-Latency Architecture: Database Triggers + Serverless Functions for Modern Reactive Architectures
  • Turbocharge Load Testing: Yandex.Tank + ghz Combo for Lightning-Fast Code Checks
  • Java Stream API: 3 Things Every Developer Should Know About
  1. DZone
  2. Data Engineering
  3. Data
  4. Using ElasticSearch for Big Data Analysis

Using ElasticSearch for Big Data Analysis

Learn how leveraging ElasticSearch to build the data infrastructure makes it easier to linearly scale as new data nodes are added in the future.

By 
Rohit Akiwatkar user avatar
Rohit Akiwatkar
·
May. 28, 17 · Opinion
Likes (9)
Comment
Save
Tweet
Share
29.7K Views

Join the DZone community and get the full member experience.

Join For Free

Collecting data is good and collecting Big Data is better, but analyzing Big Data is not easy. It requires knowledge of enterprise search engines for making content from different sources like enterprise databases, social media, sensor data, etc. searchable to a defined audience. ElasticSearch, Apache Solr, and Sphinx are some of the free and open-source enterprise search software.

While applications of ElasticSearch have advanced to Machine Learning, in this blog, I have tried to summarize a simple use case for Big Data analysis using ElasticSearch. ElasticSearch recently added Machine Learning algorithms to its enterprise stack for the purpose of finding anomalies in time-series log data.

Key Benefits of ElasticSearch Implementation

ElasticSearch is used for web search, log analysis, and Big Data analytics. ElasticSearch is more popular because it is easy to install, it scales out to hundreds of nodes with no additional software, and it is easy to work with due to its built-in REST API. Following is the summary of key benefits; for a detailed account, check out this article. 

  • Developer-friendly API.

  • Real-time analytics.

  • Ease of indexing.

  • Full-text search.

  • Resilient clusters.

How to Leverage ElasticSearch for Big Data Analysis

Check out this study of how ElasticSearch is employed by GitHub to meet the search needs of GitHub’s users, while simultaneously providing strategic insights that help improve customer service. To solve this problem, GitHub used Elasticsearch and index critical event data to index its code repositories. GitHub uses ElasticSearch to index new code as soon as users push it to a repository on GitHub. This way, ElasticSearch converts data from RDBMS form to NoSQL form. The data in the NoSQL form can be searched immediately after the users upload it in the RDBMS store. ElasticSearch returns search results for both public repositories, and logged-in users can see search results for any private repositories that they can access.

At Maruti Techlabs, we have a challenge of combining structured and unstructured data for big data analysis. We want to improve the user experience in searching data of used car parts for our client based in Austin, Texas. A potential customer can find used parts for his car on this portal. A huge amount of data (around 42 million) affects the usability of the system performance and query response time. We have designed a solution that brings Big Data stores and traditional RDBMS toolsets to a single, unified data analytics platform that enables analysts to access any amount of data of any type for any analysis at any time. Both SQL and NoSQL technologies are being utilized for making an efficient big data analytics ecosystem. We implement logic to convert data collected from clients in RDBMS databases to NoSQL form. This new NoSQL database is analyzed by ElasticSearch. So when data from vendors is maintained on the SQL server, it is simultaneously fed into ElasticSearch.

Using ElasticSearch, there was a significant reduction (33 percent) in average query response time in the portal. Scalability is another additional benefit of this new architecture. Leveraging ElasticSearch to build the data infrastructure has made it easier to linearly scale as new data nodes are added in the future.

Big data Elasticsearch Data analysis

Published at DZone with permission of Rohit Akiwatkar. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Profiling Big Datasets With Apache Spark and Deequ
  • Useful Tips and Tricks for Data Scientists
  • Data Analytics Trends To Watch in 2024
  • Simplify Big Data Analytics With AirMettle

Partner Resources

×

Comments

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • [email protected]

Let's be friends: