DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workloads.

Related

  • Essential Python Libraries: Introduction to NumPy and Pandas
  • Smart Routing Using AI for Efficient Logistics and Green Solutions
  • Predicting Traffic Volume With Artificial Intelligence and Machine Learning
  • A Guide to Regression Analysis Forecasting in Python

Trending

  • Navigating the LLM Landscape: A Comparative Analysis of Leading Large Language Models
  • How AI Is Changing the Way Developers Write Code
  • How Large Tech Companies Architect Resilient Systems for Millions of Users
  • Metrics at a Glance for Production Clusters

Linear Regression Using Numpy

By 
Giuseppe Vettigli user avatar
Giuseppe Vettigli
·
Mar. 26, 12 · Interview
Likes (0)
Comment
Save
Tweet
Share
13.7K Views

Join the DZone community and get the full member experience.

Join For Free
A few posts ago, we saw how to use the function numpy.linalg.lstsq(...) to solve an over-determined system. This time, we'll use it to estimate the parameters of a regression line.

A linear regression line is of the form w1x+w2=y and it is the line that minimizes the sum of the squares of the distance from each data point to the line. So, given n pairs of data (xi, yi), the parameters that we are looking for are w1 and w2 which minimize the error



and we can compute the parameter vector w = (w1 , w2)T as the least-squares solution of the following over-determined system



Let's use numpy to compute the regression line:
from numpy import arange,array,ones,random,linalg
from pylab import plot,show

xi = arange(0,9)
A = array([ xi, ones(9)])
# linearly generated sequence
y = [19, 20, 20.5, 21.5, 22, 23, 23, 25.5, 24]
w = linalg.lstsq(A.T,y)[0] # obtaining the parameters

# plotting the line
line = w[0]*xi+w[1] # regression line
plot(xi,line,'r-',xi,y,'o')
show()
We can see the result in the plot below.



You can find more about data fitting using numpy in the following posts:

  • Polynomial curve fitting
  • Curve fitting using fmin
Linear regression NumPy

Published at DZone with permission of Giuseppe Vettigli, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Essential Python Libraries: Introduction to NumPy and Pandas
  • Smart Routing Using AI for Efficient Logistics and Green Solutions
  • Predicting Traffic Volume With Artificial Intelligence and Machine Learning
  • A Guide to Regression Analysis Forecasting in Python

Partner Resources

×

Comments

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: