{{ !articles[0].partner.isSponsoringArticle ? "Platinum" : "Portal" }} Partner
css,python,tutorial,numpy,linear regression

Linear Regression Using Numpy

A few posts ago, we saw how to use the function numpy.linalg.lstsq(...) to solve an over-determined system. This time, we'll use it to estimate the parameters of a regression line.

A linear regression line is of the form w1x+w2=y and it is the line that minimizes the sum of the squares of the distance from each data point to the line. So, given n pairs of data (xi, yi), the parameters that we are looking for are w1 and w2 which minimize the error

and we can compute the parameter vector w = (w1 , w2)T as the least-squares solution of the following over-determined system

Let's use numpy to compute the regression line:
from numpy import arange,array,ones,random,linalg
from pylab import plot,show

xi = arange(0,9)
A = array([ xi, ones(9)])
# linearly generated sequence
y = [19, 20, 20.5, 21.5, 22, 23, 23, 25.5, 24]
w = linalg.lstsq(A.T,y)[0] # obtaining the parameters

# plotting the line
line = w[0]*xi+w[1] # regression line
We can see the result in the plot below.

You can find more about data fitting using numpy in the following posts:

Published at DZone with permission of {{ articles[0].authors[0].realName }}, DZone MVB. (source)

Opinions expressed by DZone contributors are their own.

{{ tag }}, {{tag}},

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}
{{ parent.authors[0].realName || parent.author}}

{{ parent.authors[0].tagline || parent.tagline }}

{{ parent.views }} ViewsClicks