Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

DZone's Guide to

# R: Linear models with the lm function, NA values and Collinearity

· Big Data Zone ·
Free Resource

Comment (4)

Save
{{ articles[0].views | formatCount}} Views

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

In my continued playing around with R I’ve sometimes noticed ‘NA’ values in the linear regression models I created but hadn’t really thought about what that meant.

On the advice of Peter Huber I recently started working my way through Coursera’s Regression Models which has a whole slide explaining its meaning:

So in this case ‘z’ doesn’t help us in predicting Fertility since it doesn’t give us any more information that we can’t already get from ‘Agriculture’ and ‘Education’.

Although in this case we know why ‘z’ doesn’t have a coefficient sometimes it may not be clear which other variable the NA one is highly correlated with.

Multicollinearity (also collinearity) is a statistical phenomenon in which two or more predictor variables in a multiple regression model are highly correlated, meaning that one can be linearly predicted from the others with a non-trivial degree of accuracy.

In that situation we can make use of the alias function to explain the collinearity as suggested in this StackOverflow post:

```library(datasets); data(swiss); require(stats); require(graphics)
z <- swiss\$Agriculture + swiss\$Education
fit = lm(Fertility ~ . + z, data = swiss)```
```> alias(fit)
Model :
Fertility ~ Agriculture + Examination + Education + Catholic +
Infant.Mortality + z

Complete :
(Intercept) Agriculture Examination Education Catholic Infant.Mortality
z 0           1           0           1         0        0```

In this case we can see that ‘z’ is highly correlated with both Agriculture and Education which makes sense given its the sum of those two variables.

When we notice that there’s an NA coefficient in our model we can choose to exclude that variable and the model will still have the same coefficients as before:

```> require(dplyr)
> summary(lm(Fertility ~ . + z, data = swiss))\$coefficients
Estimate  Std. Error   t value     Pr(>|t|)
(Intercept)      66.9151817 10.70603759  6.250229 1.906051e-07
Agriculture      -0.1721140  0.07030392 -2.448142 1.872715e-02
Examination      -0.2580082  0.25387820 -1.016268 3.154617e-01
Education        -0.8709401  0.18302860 -4.758492 2.430605e-05
Catholic          0.1041153  0.03525785  2.952969 5.190079e-03
Infant.Mortality  1.0770481  0.38171965  2.821568 7.335715e-03
> summary(lm(Fertility ~ ., data = swiss))\$coefficients
Estimate  Std. Error   t value     Pr(>|t|)
(Intercept)      66.9151817 10.70603759  6.250229 1.906051e-07
Agriculture      -0.1721140  0.07030392 -2.448142 1.872715e-02
Examination      -0.2580082  0.25387820 -1.016268 3.154617e-01
Education        -0.8709401  0.18302860 -4.758492 2.430605e-05
Catholic          0.1041153  0.03525785  2.952969 5.190079e-03
Infant.Mortality  1.0770481  0.38171965  2.821568 7.335715e-03```

If we call alias now we won’t see any output:

```> alias(lm(Fertility ~ ., data = swiss))
Model :
Fertility ~ Agriculture + Examination + Education + Catholic +
Infant.Mortality```

Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Comment (4)

Save
{{ articles[0].views | formatCount}} Views

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.