# R: Linear models with the lm function, NA values and Collinearity

# R: Linear models with the lm function, NA values and Collinearity

Join the DZone community and get the full member experience.

Join For Free**The open source HPCC Systems platform is a proven, easy to use solution for managing data at scale. Visit our Easy Guide to learn more about this completely free platform, test drive some code in the online Playground, and get started today.**

In my continued playing around with R I’ve sometimes noticed ‘NA’ values in the linear regression models I created but hadn’t really thought about what that meant.

On the advice of Peter Huber I recently started working my way through Coursera’s Regression Models which has a whole slide explaining its meaning:

So in this case ‘z’ doesn’t help us in predicting Fertility since it doesn’t give us any more information that we can’t already get from ‘Agriculture’ and ‘Education’.

Although in this case we know why ‘z’ doesn’t have a coefficient sometimes it may not be clear which other variable the NA one is highly correlated with.

Multicollinearity(alsocollinearity) is a statistical phenomenon in which two or more predictor variables in a multiple regression model are highly correlated, meaning that one can be linearly predicted from the others with a non-trivial degree of accuracy.

In that situation we can make use of the alias function to explain the collinearity as suggested in this StackOverflow post:

library(datasets); data(swiss); require(stats); require(graphics) z <- swiss$Agriculture + swiss$Education fit = lm(Fertility ~ . + z, data = swiss)

> alias(fit) Model : Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality + z Complete : (Intercept) Agriculture Examination Education Catholic Infant.Mortality z 0 1 0 1 0 0

In this case we can see that ‘z’ is highly correlated with both Agriculture and Education which makes sense given its the sum of those two variables.

When we notice that there’s an NA coefficient in our model we can choose to exclude that variable and the model will still have the same coefficients as before:

> require(dplyr) > summary(lm(Fertility ~ . + z, data = swiss))$coefficients Estimate Std. Error t value Pr(>|t|) (Intercept) 66.9151817 10.70603759 6.250229 1.906051e-07 Agriculture -0.1721140 0.07030392 -2.448142 1.872715e-02 Examination -0.2580082 0.25387820 -1.016268 3.154617e-01 Education -0.8709401 0.18302860 -4.758492 2.430605e-05 Catholic 0.1041153 0.03525785 2.952969 5.190079e-03 Infant.Mortality 1.0770481 0.38171965 2.821568 7.335715e-03 > summary(lm(Fertility ~ ., data = swiss))$coefficients Estimate Std. Error t value Pr(>|t|) (Intercept) 66.9151817 10.70603759 6.250229 1.906051e-07 Agriculture -0.1721140 0.07030392 -2.448142 1.872715e-02 Examination -0.2580082 0.25387820 -1.016268 3.154617e-01 Education -0.8709401 0.18302860 -4.758492 2.430605e-05 Catholic 0.1041153 0.03525785 2.952969 5.190079e-03 Infant.Mortality 1.0770481 0.38171965 2.821568 7.335715e-03

If we call alias now we won’t see any output:

> alias(lm(Fertility ~ ., data = swiss)) Model : Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality

**Managing data at scale doesn’t have to be hard. Find out how the completely free, open source HPCC Systems platform makes it easier to update, easier to program, easier to integrate data, and easier to manage clusters. Download and get started today.**

Published at DZone with permission of Mark Needham , DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

## {{ parent.title || parent.header.title}}

## {{ parent.tldr }}

## {{ parent.linkDescription }}

{{ parent.urlSource.name }}