DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workkloads.

Secure your stack and shape the future! Help dev teams across the globe navigate their software supply chain security challenges.

Releasing software shouldn't be stressful or risky. Learn how to leverage progressive delivery techniques to ensure safer deployments.

Avoid machine learning mistakes and boost model performance! Discover key ML patterns, anti-patterns, data strategies, and more.

Related

  • Remote Debugging Cloud Foundry Apps
  • Introduction to Apache Kafka With Spring
  • AI, ML, and Data Science: Shaping the Future of Automation
  • Doris: Unifying SQL Dialects for a Seamless Data Query Ecosystem

Trending

  • Issue and Present Verifiable Credentials With Spring Boot and Android
  • Evolution of Cloud Services for MCP/A2A Protocols in AI Agents
  • Subtitles: The Good, the Bad, and the Resource-Heavy
  • Fixing Common Oracle Database Problems
  1. DZone
  2. Data Engineering
  3. Big Data
  4. Spring XD 1.2 GA, Spring XD 1.1.3 and Flo for Spring XD Beta Released

Spring XD 1.2 GA, Spring XD 1.1.3 and Flo for Spring XD Beta Released

By 
Pieter Humphrey user avatar
Pieter Humphrey
DZone Core CORE ·
Jun. 21, 15 · Interview
Likes (0)
Comment
Save
Tweet
Share
3.3K Views

Join the DZone community and get the full member experience.

Join For Free

Written by Mark Pollack.


Today, we are pleased to announce the general availability of Spring XD 1.2, Spring XD 1.1.3 and the release of Flo for Spring XD Beta.

  • 1.2.0.GA: zip
  • 1.1.3.RELEASE: zip
  • Flo for Spring XD Beta

You can also install XD 1.2 using brew and rpm

The 1.2 release includes a wide range of new features and improvements. The release journey was an eventful one, mainly due to Spring XD’s popularity with so many different groups, each with their respective request priorities. However the Spring XD team rose to the challenge and it is rewarding to look back and review the amount of innovation delivered to meet our commitments toward simplifying big data complexity.

Here is a summary of what we have been busy with for the last 3 months and the value created for the community and our customers.

Flo for Spring XD and UI improvements

Flo for Spring XD is an HTML5 canvas application that runs on top of the Spring XD runtime, offering a graphical interface for creation, management and monitoring streaming data pipelines. Here is a short screencast showing you how to build an advanced stream definition.

You can browse the documentation for additional information and links to additional screen casts of Flo in action.

The XD admin screen also includes a new Analytics section that allows you to easily view gauges, counters, field-value counters and aggregate counters.

Performance Improvements

Anticipating increased high-throughput and low-latency IoT requirements, we’ve made several performance optimizations within the underlying message-bus implementation to deliver several million messages per second transported between Spring XD containers using Kafka as a transport. With these optimizations, we are now on par with the performance from Kafka’s own testing tools. However, we are using the more feature rich Spring Integration Kafka client instead of Kafka’s high level consumer library.

For anyone who is interested in reproducing these numbers, please refer to the XD benchmarking blog, which describes the tests performed and infrastructure used in detail.

Apache Ambari and Pivotal HD

To help automate the deployment of Spring XD on an Apache HadoopⓇ cluster, we added an Apache AmbariⓇ plugin for Spring XD. The plugin is supported on both Pivotal HD 3.0 and Hortonworks HDP 2.2 distributions. We also added support in Spring XD for Pivotal HD 3.0, bringing the total number of Hadoop versions supported to five.

New Sources, Processors, Sinks, and Batch Jobs

One of Spring XD’s biggest value propositions is its complete set of out-of-the-box data connectivity adapters that can be used to create real-time and batch-based data pipelines, and these require little to no user-code for common use-cases. With the help of community contributions, we now have MongoDB, VideCap, and FTP as source modules, an XSLT-transformer processor, and FTP sink module. The XD team also developed a Cassandra sink and a language-detection processor.

Recognizing the important role in the Pivotal Big Data portfolio, we have also added native integration with Pivotal Greenplum Database and Pivotal HAWQ through gpfdist sink for real-time streaming and also support for gpload based batch jobs.

Adding to our developer productivity theme and the use of Spring XD in production for high-volume data ingest use-cases, we are delighted to recognize Simon Tao and Yu Cao (EMC² Office of The CTO & Labs China), who have been operationalizing Spring XD data pipelines in production since 2014 and also for the VideCap source module contribution. Their use-case and implementation specifics (in their own words) are below.

“There are significant demands to extract insights from large magnitude of unstructured video streams for the video surveillance industry. Prior to being analyzed by data scientists, the video surveillance data needs to be ingested in the first place. To tackle this challenge, we built a highly scalable and extensible video-data ingestion platform using Spring XD. This platform is operationally ready to ingest different kinds of video sources into a centralized Big Data Lake. Given the out-of-the-box features within Spring XD, the platform is designed to allow rich video content processing capabilities such as video transcoding and object detection, etc.

The platform also supports various types of video sources—data processors and data exporting destinations (e.g. HDFS, Gemfire XD and Spark)—which are built as custom modules in Spring XD and are highly reusable and composable. With a declarative DSL, a video ingestion stream will be handled by a video ingestion pipeline defined as Directed Acyclic Graph of modules. The pipeline is designed to be deployed in a clustered environment with upstream modules transferring data to downstream ones efficiently via the message bus. The Spring-XD distributed runtime allows each module in the pipeline to have multiple instances that run in parallel on different nodes. By scaling out horizontally, our system is capable of supporting large scale video surveillance deployment with high volume of video data and complex data processing workloads.”

Custom Module Registry and HA Support

Though we have had the flexibility to configure shared network location for distributed availability of custom modules (via: xd.customModule.home), we also recognized the importance of having the module-registry resilient under failure scenarios—hence, we have an HDFS backed module registry. Having this setup for production deployment provides consistent availability of custom module bits and the flexibility of choices, as needed by the business requirements.

Pivotal Cloud Foundry Integration

Furthering the Pivotal Cloud Foundry integration efforts, we have made several foundation-level changes to the Spring XD runtime, so we are able to run Spring XD modules as cloud-native Apps in Lattice and Diego­. We have aggressive roadmap plans to launch Spring XD on Diego proper. While studying Diego’s Receptor API (written in Go!), we created a Java Receptor API, which is now proposed to Cloud Foundry for incubation.

Next Steps

We have some very interesting developments on the horizon. Perhaps the most important, we will be launching new projects that focus on message-driven and batch-oriented “data microservices”. These will be built directly on Spring Boot as well as Spring Integration and Spring Batch, respectively. Our main goal is to provide the simplest possible developer experience for creating cloud-native, data-centric microservice apps. In turn, Spring XD 2.0 will be refactored as a layer above those projects, to support the composition of those data microservices into streams and jobs as well as all of the “as a service” aspects that it provides today, but it will have a major focus on deployment to Cloud Foundry and Lattice. We will be posting more on these new projects soon, so stay tuned!

Feedback is very important, so please get in touch with questions and comments via
* StackOverflowspring-xd tag
* Spring JIRA or GitHub Issues

Editor’s Note: ©2015 Pivotal Software, Inc. All rights reserved. Pivotal, Pivotal HD, Pivotal Greenplum Database, Pivotal Gemfire and Pivotal Cloud Foundry are trademarks and/or registered trademarks of Pivotal Software, Inc. in the United States and/or other countries. Apache, Apache Hadoop, Hadoop and Apache Ambari are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.

  • All Posts
  • Engineering
  • Releases
  • News and Events
Spring Framework Big data Genetic algorithm Cloud Foundry BETA (programming language)

Opinions expressed by DZone contributors are their own.

Related

  • Remote Debugging Cloud Foundry Apps
  • Introduction to Apache Kafka With Spring
  • AI, ML, and Data Science: Shaping the Future of Automation
  • Doris: Unifying SQL Dialects for a Seamless Data Query Ecosystem

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!