DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Because the DevOps movement has redefined engineering responsibilities, SREs now have to become stewards of observability strategy.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Related

  • How to Design Event Streams, Part 1
  • Implementing Observability Data Stream Solutions in Corporate Settings for SLA Compliance
  • Data Stream Using Apache Kafka and Camel Application
  • Techniques You Should Know as a Kafka Streams Developer

Trending

  • Introduction to Retrieval Augmented Generation (RAG)
  • Intro to RAG: Foundations of Retrieval Augmented Generation, Part 1
  • How to Format Articles for DZone
  • Prioritizing Cloud Security Risks: A Developer's Guide to Tackling Security Debt
  1. DZone
  2. Data Engineering
  3. Big Data
  4. Streaming Analytics With Snowflake

Streaming Analytics With Snowflake

In this demo, we’re going to build a simple system to ingest and alert in parallel for maximum speed. This architecture can be used for a cybersecurity threat.

By 
Reinout Korbee user avatar
Reinout Korbee
·
Jul. 11, 23 · Tutorial
Likes (1)
Comment
Save
Tweet
Share
6.7K Views

Join the DZone community and get the full member experience.

Join For Free

Snowpipe Streaming

Snowflake introduced Snowpipe Streaming and is set to be a key technology for near-real-time streaming workloads.

Data ingestion is, however, only one part of the story.

You can ingest data and store it for analytics, but in some cases, you need to be faster.

You need streaming analytics. Snowpipe Streaming reads from a Kafka topic and ingests data into a connected table.

If you connect a service on the same Kafka topic for analytics before ingesting, then you can perform near-real-time analytics and raise an alert before data is ingested.

The alert is sent to a notification service and written to the database. The alerter service can join data with existing records in the database and provide context.

For example, to implement an alerter service for your cybersecurity threat and incident detection system.

At the same time, the Snowpipe Stream is ingested, and all events are made available.

Demo

In this demo, we’re going to build a simple system to ingest and alert in parallel for maximum speed.

  1. High-speed analytics for alerting
  2. Streaming data ingestion

This architecture can, for example, be used for a cybersecurity threat and incident detection workload.

Solution Architecture

Demo Streaming Analytics with Snowflake
Demo Streaming Analytics with Snowflake

Check Out the Project

The code for the demo is available at GitHub.

Snowflake Trial Account

For this demo, you should have access to a Snowflake instance and be able to configure key authentication for a user. You need the SECURITYADMIN role, and if you don’t have it, you can create a trial account on Snowflake and try it out.

The tables are set up as follows:

SQL
 
create database streaming_demo;
create or replace table events (timestamp timestamp, value numeric);
create or replace table alerts (timestamp timestamp, value numeric, alert string);


On the command line, execute the command to copy the public key:

pbcopy <  app/src/main/resources/ssh_keys/rsa_key.pub


Remove the header and footer of the key.

SQL
 
alter user <user> set rsa_public_key='<PUBLIC KEY GOES HERE>';


Set Up Confluent Kafka

We will use Confluent Kafka for this demo. Confluent now offers KRaft, in development, a Kafka without Zookeeper — ideal for development on your laptop with practically zero set-up effort.

The Kafka Client is used:

// https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients
implementation 'org.apache.kafka:kafka-clients:3.4.0'


The demo project contains the scripts to download and configure Kafka.

You can either run them or look at the commands and use them manually.

Download and install Kafka Confluent:

./init_kafka.sh

wget https://packages.confluent.io/archive/7.3/confluent-community-7.3.2.tar.gz

tar -xf confluent-community-7.3.2.tar.gz

cd confluent-7.3.2

./bin/kafka-storage format --config ./etc/kafka/kraft/server.properties --cluster-id $(./bin/kafka-storage random-uuid)


Start the Kafka server:

./start_kafka.sh

./bin/kafka-server-start ./etc/kafka/kraft/server.properties


Create the topic:

./init_topic.sh

./bin/kafka-topics --bootstrap-server localhost:9092 --delete --topic streaming-demo

./bin/kafka-topics --bootstrap-server localhost:9092 --create --topic streaming-demo

./bin/kafka-console-consumer --bootstrap-server localhost:9092 --topic streaming-demo --from-beginning


The next time you only need to run:

./start_kafka.sh

If you run ./init_topic.sh then the topic will be re-created, and the consumer will be started. The produced messages are written to the terminal.

You can test the Kafka topic with the producer:

./start_producer.sh

./bin/kafka-console-producer --bootstrap-server localhost:9092 --topic streaming-demo


Test your Kafka setup with: TestKafka.java

Java
 
package com.snowice23;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;
import java.util.Random;

import static com.snowice23.ConnectionHelper.KAFKA_TOPIC;

public class TestKafka {

    public static void main(String[] args) throws InterruptedException {

        Properties props = ConnectionHelper.getKafkaProducerProperties();

        // create the producer
        KafkaProducer<String, String> producer = new KafkaProducer<>(props);

        Random random = new Random();

        while (true) {
            Thread.sleep(500);

            // random numbers from [0, 10>
            Integer value = random.nextInt(10);

            // create a producer record
            ProducerRecord<String, String> producerRecord =
                    new ProducerRecord<>(KAFKA_TOPIC, String.valueOf(value));

            // send data - asynchronous
            producer.send(producerRecord);

            // flush data - synchronous
            producer.flush();
        }
    }
}


Producer Service

The Producer is a simple Java class with a main method that produces random numbers. The numbers are put on a Kafka topic.

The producer is very similar to the test class, so there’s no need to show the code here.

Snowflake Key Authentication

The ingester and alerter need to write to the Snowflake database. The connection is secured and authenticated with a public/ private key pair. The sample code to perform key authentication is located in: ConnectionHelper.java

How to generate a key pair is described here.

I won’t go over the details, but please note the following:

Java
 
// JDBC needs the PrivateKey object
props.put("privateKey", PrivateKeyReader.getPrivateKey(PRIVATE_KEY_FILE));

// SnowPipe needs the private key as string to parse it internally
props.put("private_key", PrivateKeyReader.getPrivateKeyAsString(PRIVATE_KEY_FILE));


JDBC and Snowpipe have different syntax and arguments for the private key.

The Bouncy Castle libraries are needed:

// https://mvnrepository.com/artifact/org.bouncycastle/bcprov-jdk18on
implementation 'org.bouncycastle:bcprov-jdk18on:1.73'

// https://mvnrepository.com/artifact/org.bouncycastle/bcpkix-jdk18on
implementation 'org.bouncycastle:bcpkix-jdk18on:1.73'


The full code:

Java
 
package com.snowice23;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.bouncycastle.asn1.pkcs.PrivateKeyInfo;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.openssl.PEMParser;
import org.bouncycastle.openssl.jcajce.JcaPEMKeyConverter;
import org.bouncycastle.openssl.jcajce.JceOpenSSLPKCS8DecryptorProviderBuilder;
import org.bouncycastle.operator.InputDecryptorProvider;
import org.bouncycastle.pkcs.PKCS8EncryptedPrivateKeyInfo;

import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.net.URL;
import java.nio.file.Files;
import java.security.PrivateKey;
import java.security.Security;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.Properties;

public class ConnectionHelper {

    public static final String ACCOUNT_NAME = "<<ACCOUNT_NAME>>";

    public static final String REGION = "<<REGION>>";

    public static final String USER_NAME = "<<USERNAME>>";

    private static final String PRIVATE_KEY_FILE = "ssh_keys/rsa_key.p8";

    public static final String KAFKA_TOPIC = "streaming-demo";

    public static final String KAFKA_BOOTSTRAP_SERVERS = "127.0.0.1:9092";;


    public static Connection getConnection() throws Exception {
        Properties props = getProperties();
        return DriverManager.getConnection(props.getProperty("connect_string"), props);
    }

    public static Properties getKafkaConsumerProperties(String groupName) {
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KAFKA_BOOTSTRAP_SERVERS);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.put(ConsumerConfig.GROUP_ID_CONFIG, groupName);
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        return props;
    }

    public static Properties getKafkaProducerProperties() {
        Properties props = new Properties();
        props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KAFKA_BOOTSTRAP_SERVERS);
        props.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        props.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        return props;
    }

    public static Properties getProperties() throws Exception {

        Properties props = new Properties();

        // Snowflake connection properties
        props.put("user", USER_NAME);
        //props.put("url", "https://account_name.snowflakecomputing.com:443");
        props.put("account", ACCOUNT_NAME);

        // JDBC needs the PrivateKey object
        props.put("privateKey", PrivateKeyReader.getPrivateKey(PRIVATE_KEY_FILE));

        // SnowPipe needs the private key as string to parse it internally
        props.put("private_key", PrivateKeyReader.getPrivateKeyAsString(PRIVATE_KEY_FILE));

        props.put("port", "443");
        props.put("host", ACCOUNT_NAME + "."+REGION+".snowflakecomputing.com");
        props.put("schema", "public");
        props.put("scheme", "https");
        props.put("database", "streaming_demo");
        props.put("connect_string", "jdbc:snowflake://" + ACCOUNT_NAME + "."+REGION+".snowflakecomputing.com");
        props.put("ssl", "on");
        props.put("warehouse", "compute_wh");
        props.put("role", "accountadmin");
        return props;
    }

    // https://docs.snowflake.com/en/developer-guide/jdbc/jdbc-configure
    public static class PrivateKeyReader {

        // If you generated an encrypted private key, implement this method to return
        // the passphrase for decrypting your private key.
        private static String getPrivateKeyPassphrase() {
            return "";
        }

        public static PrivateKey getPrivateKey(String filename) throws Exception {
            PrivateKeyInfo privateKeyInfo = null;
            Security.addProvider(new BouncyCastleProvider());
            // Read an object from the private key file.
            File privateKeyFile = loadFileFromClasspath(filename);
            PEMParser pemParser = new PEMParser(new FileReader(privateKeyFile));
            Object pemObject = pemParser.readObject();
            if (pemObject instanceof PKCS8EncryptedPrivateKeyInfo encryptedPrivateKeyInfo) {
                // Handle the case where the private key is encrypted.
                String passphrase = getPrivateKeyPassphrase();
                InputDecryptorProvider pkcs8Prov = new JceOpenSSLPKCS8DecryptorProviderBuilder().build(passphrase.toCharArray());
                privateKeyInfo = encryptedPrivateKeyInfo.decryptPrivateKeyInfo(pkcs8Prov);
            } else if (pemObject instanceof PrivateKeyInfo) {
                // Handle the case where the private key is unencrypted.
                privateKeyInfo = (PrivateKeyInfo) pemObject;
            }
            pemParser.close();
            JcaPEMKeyConverter converter = new JcaPEMKeyConverter().setProvider(BouncyCastleProvider.PROVIDER_NAME);
            return converter.getPrivateKey(privateKeyInfo);
        }

        static File loadFileFromClasspath(String filePath) {
            // Use the class loader to load the file from the classpath.
            ClassLoader classLoader = ConnectionHelper.class.getClassLoader();

            // Get the file as a URL.
            URL url = classLoader.getResource(filePath);

            if (url == null) {
                throw new IllegalArgumentException("File not found on classpath");
            }

            try {
                // Convert the URL to a URI, then to a File.
                URI uri = url.toURI();
                return new File(uri);
            } catch (URISyntaxException e) {
                throw new IllegalArgumentException("URL could not be converted to a URI", e);
            }
        }

        public static String getPrivateKeyAsString(String filePath) throws IOException {
            File privateKeyFile = loadFileFromClasspath(filePath);
            return new String(Files.readAllBytes(privateKeyFile.toPath()));
        }

    }
}


Test Key Authentication With a JDBC Connection

After you set up key authentication in Snowflake, it is time to test the connection.

The TestJdbc.java class is available for testing the key authentication:

Java
 
public static void main(String[] args)
          throws Exception {
      Connection conn = ConnectionHelper.getConnection();
      Statement stat = conn.createStatement();
      ResultSet res = stat.executeQuery("select 1");
      res.next();
      System.out.println(res.getString(1));
      conn.close();
  }


Ingesting Service With Snowpipe Streaming

The ingestion service uses the ConnectionHelper to connect to Snowflake.

The Snowpipe Streaming service is built with the Snowflake Ingest SDK:

// https://mvnrepository.com/artifact/net.snowflake/snowflake-ingest-sdk
implementation 'net.snowflake:snowflake-ingest-sdk:1.1.3'


First, you need to create a SnowflakeStreamingIngestClient:

Java
 
// Create a streaming ingest client
try (SnowflakeStreamingIngestClient client = 
               SnowflakeStreamingIngestClientFactory
               .builder("MY_CLIENT")
               .setProperties(props).build()) {


Second, create a channel to connect to a table:

Java
 
// Create an open channel request on table MY_TABLE, note that the corresponding
// db/schema/table needs to be present
// Example: create or replace table MY_TABLE(c1 number);
OpenChannelRequest request1 =
        OpenChannelRequest.builder("MY_CHANNEL")
                .setDBName("STREAMING_DEMO")
                .setSchemaName("PUBLIC")
                .setTableName("EVENTS")
                .setOnErrorOption(
                        OpenChannelRequest.OnErrorOption.CONTINUE) // Another ON_ERROR option is ABORT
                .build();


Third, open the channel:

Java
 
// Open a streaming ingest channel from the given client
SnowflakeStreamingIngestChannel channel1 = client.openChannel(request1);


Fourth, read messages from Kafka and insert them in the channel:

Java
 
// Kafka Consumer
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(List.of(KAFKA_TOPIC));

ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(500));
  
InsertValidationResponse response = channel1.insertRow(row, null);


The full code is found here.

Alerter Service With Kafka and JDBC

The alerter service reads from the same Kafka topic, looks for a pattern, and insert directly with JDBC. The Snowflake JDBC library is used:

// https://mvnrepository.com/artifact/net.snowflake/snowflake-jdbc
implementation 'net.snowflake:snowflake-jdbc:3.13.32'


The alerter works directly with the Kafka stream. Data is thus not ingested first before any pattern matching, filtering, or analytics are done.

The alerter is a simple Kafka Consumer and JDBC client:

Java
 
package com.snowice23.streaming;

import java.sql.*;
import java.time.Duration;
import java.util.*;

import com.snowice23.ConnectionHelper;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import static com.snowice23.ConnectionHelper.KAFKA_TOPIC;
import static java.lang.System.*;

public class Alerter {
    public static void main(String[] args) throws Exception {

        Connection conn = ConnectionHelper.getConnection();
        String insertAlert = "INSERT INTO alerts VALUES(?, ?, ?)";

        // create statement
        PreparedStatement statement = conn.prepareStatement(insertAlert);

        Properties props = new Properties();
        props.putAll(ConnectionHelper.getKafkaConsumerProperties("alerter-group"));
        props.putAll(ConnectionHelper.getProperties());

        // Kafka Consumer
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(List.of(KAFKA_TOPIC));

        out.println("Subscribed to Kafka topic: " + consumer.subscription());

        // Insert alerts into the database with JDBC
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(500));
            //out.println("Listening...");
            for (ConsumerRecord<String, String> record : records) {

                int value = Integer.parseInt(record.value());

                // implement simple stream analyzer to simulate outlier detection
                if (value >= 8) {

                    Timestamp timestamp = new Timestamp(System.currentTimeMillis());

                    // insert a row
                    statement.setTimestamp(1, timestamp);
                    statement.setInt(2, value);
                    statement.setString(3, "alert raised");

                    statement.executeUpdate();

                    out.println("Alert:" + record.value());
                }
            }

        }

    }
}


The alerter service can be improved with, for example, Apache Flink and Pager Duty instead of a simple if .. else .. statement and a System.out call.

Run the Demo

Open ConnectionHelper and set: ACCOUNT_NAME, REGION, USERNAME

  1. Start the Kafka server: ./start_kafka.sh
  2. Initialize the topic: ./init_topic.sh
  3. Run the Ingester
  4. Run the Alerter
  5. Run the Producer

The data should now be available in the Snowflake tables. Go to Snowsight and run a select statement on the events and alerts tables.

SQL
 
select * from events;

select * from alerts;


Wrap Up

This demo covered the following topics:

  1. Snowflake key authentication with JDBC and Snowpipe streaming
  2. Snowflake JDBC
  3. Snowpipe Streaming with Kafka
  4. Confluent Kafka with Kraft
  5. Streaming analytics and alerting
Data (computing) Java (programming language) kafka Data stream authentication Stream (computing)

Published at DZone with permission of Reinout Korbee. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • How to Design Event Streams, Part 1
  • Implementing Observability Data Stream Solutions in Corporate Settings for SLA Compliance
  • Data Stream Using Apache Kafka and Camel Application
  • Techniques You Should Know as a Kafka Streams Developer

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!