DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Because the DevOps movement has redefined engineering responsibilities, SREs now have to become stewards of observability strategy.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Related

  • Thoughts On the Software Crisis
  • Languages for Domain Experts, Not Just for Programmers
  • Difference Between High-Level and Low-Level Programming Languages
  • Container Attached Storage (CAS) vs. Software-Defined Storage - Which One to Choose?

Trending

  • How to Use AWS Aurora Database for a Retail Point of Sale (POS) Transaction System
  • Bridging UI, DevOps, and AI: A Full-Stack Engineer’s Approach to Resilient Systems
  • Can You Run a MariaDB Cluster on a $150 Kubernetes Lab? I Gave It a Shot
  • Apache Spark 4.0: Transforming Big Data Analytics to the Next Level

Why Abstraction is Really Important

By 
Eyal Golan user avatar
Eyal Golan
·
Apr. 03, 14 · Interview
Likes (3)
Comment
Save
Tweet
Share
32.3K Views

Join the DZone community and get the full member experience.

Join For Free

Abstraction
Abstraction is one of the key elements of good software design.
It helps encapsulate behavior. It helps decouple software elements. It helps having more self-contained modules. And much more.

Abstraction makes the application extendable in much easier way. It makes refactoring much easier.
When developing with higher level of abstraction, you communicate the behavior and less the implementation.

General
In this post, I want to introduce a simple scenario that shows how, by choosing a simple solution, we can get into a situation of hard coupling and rigid design.

Then I will briefly describe how we can avoid situation like this.

Case study description
Let’s assume that we have a domain object called RawItem.

public class RawItem {
private final String originator;
private final String department;
private final String division;
private final Object[] moreParameters;
public RawItem(String originator, String department, String division, Object... moreParameters) {
this.originator = originator;
this.department = department;
this.division = division;
this.moreParameters = moreParameters;
}
}

The three first parameters represent the item’s key.
I.e. An item comes from an originator, a department and a division.
The “moreParameters” is just to emphasize the item has more parameters.

This triplet has two basic usages:
1. As key to store in the DB
2. As key in maps (key to RawItem)

Storing in DB based on the key
The DB tables are sharded in order to evenly distribute the items.
Sharding is done by a hash key modulo function.
This function works on a string.

Suppose we have N shards tables: (RAW_ITEM_REPOSITORY_00, RAW_ITEM_REPOSITORY_01,..,RAW_ITEM_REPOSITORY_NN),
then we’ll distribute the items based on some function and modulo:

String rawKey = originator + "_"  + department + "_" + division;
// func is String -> Integer function, N = # of shards
// Representation of the key is described below
int shard = func(key)%N;

Using the key in maps
The second usage for the triplet is mapping the items for fast lookup.
So, when NOT using abstraction, the maps will usually look like:

Map<String, RawItem> mapOfItems = new HashMap<>();
// Fill the map...

“Improving” the class
We see that we have common usage for the key as string, so we decide to put the string representation in the RawItem.

// new member
private final String key;
// in the constructor:
this.key = this.originator + "_" + this.department + "_"  + this.division;
// and a getter
public String getKey() {
return key;
}

Assessment of the design
There are two flows here:
1. Coupling between the sharding distribution and the items’ mapping
2. The mapping key is strict. any change forces change in the key, which might introduce hard to find bugs

And then comes a new requirement
Up until now, the triplet: originator, department and division made up a key of an item.
But now, a new requirement comes in.
A division can have subdivision.
It means that, unlike before, we can have two different items from the same triplet. The items will differ by the subdivision attribute.

Difficult to change
Regarding the DB distribution, we’ll need to keep the concatenated key of the triplet.
We must keep the modulo function the same. So distribution will remain using the triplets, but the schema will change and hava ‘subdivision’ column as well.
We’ll change the queries to use the subdivision together with original key.

In regard to the mapping, we’ll need to do a massive refactoring and to pass an ItemKey (see below) instead of just String.

Abstraction of the key
Let’s create ItemKey

public class ItemKey {
private final String originator;
private final String department;
private final String division;
private final String subdivision;
public ItemKey(String originator, String department, String division, String subdivision) {
this.originator = originator;
this.department = department;
this.division = division;
this.subdivision = subdivision;
}
public String asDistribution() {
return this.originator + "_" + this.department + "_"  + this.division;
}
}

And,

Map<ItemKey, RawItem> mapOfItems = new HashMap<>();
// Fill the map...
// new constructor for RawItem
public RawItem(ItemKey itemKey, Object... moreParameters) {
// fill the fields
}

Lesson Learned and conclusion
I wanted to show how a simple decision can really hurt.

And, how, by a small change, we made the key abstract.
In the future the key can have even more fields, but we’ll need to change only the inner implementation of it.
The logic and mapping usage should not be changed.

Regarding the change process,
I haven’t described how to do the refactoring, as it really depends on how the code looks like and how much is it tested.
In our case, some parts were easy, while others were really hard. The hard parts were around code that was looking deep in the implementation of the key (string) and the item.

This situation was real
We actually had this flow in our design.
Everything was fine for two years, until we had to change the key (add the subdivision).
Luckily all of our code is tested so we could see what breaks and fix it.
But it was painful.

There are two abstraction that we could have initially implement:
1. The more obvious is using a KEY class (as describe above). Even if it only has one String field
2. Any map usage need to be examined whether we’ll benefit by hiding it using abstraction

The second abstraction is harder to grasp and to fully understand and implement.

So,
do abstraction, tell a story and use the interfaces and don’t get into details while telling it.

Abstraction (computer science)

Published at DZone with permission of Eyal Golan, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Thoughts On the Software Crisis
  • Languages for Domain Experts, Not Just for Programmers
  • Difference Between High-Level and Low-Level Programming Languages
  • Container Attached Storage (CAS) vs. Software-Defined Storage - Which One to Choose?

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!