Text Similarity : Python-sklearn on MongoDB Collection
Check out some Python code that can calculate the similarity of an indexed field between all the documents of a MongoDB collection.
Join the DZone community and get the full member experience.
Join For FreeOverview
In this article, I set up a Python script that allows us to calculate the similarity of an indexed field between all the documents of a MongoDB collection. In the process I parallelized the executions on four threads to improve performance.
The script is detailed below, I hope it will be useful.
Python Script
import multiprocessing
import threading
import json, sys
import pymongo
import nltk, string
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import euclidean_distances
class SimilarityThread (threading.Thread):
def __init__(self, threadID, data_array, totalSize, similarity_collection,startIndex):
threading.Thread.__init__(self)
self.threadID = threadID
self.data_array = data_array
self.totalSize = totalSize
self.similarity_collection = similarity_collection
self.startIndex = startIndex
def run(self):
clacluateSimilarity( self.data_array, self.totalSize, self.similarity_collection,self.startIndex)
def clacluateDistance(txt1,txt2):
return euclidean_distances(txt1,txt2)[0][0]
def clacluateSimilarity( data_array, totalSize, similarity_collection, startIndex):
vectorizer = CountVectorizer()
for idx in range(startIndex,totalSize):
h = data_array[idx]
for idx1 in range((idx+1),totalSize):
h1 = data_array[idx1]
hSimilarity = {}
hSimilarity['idOrigin']=h['id']
hSimilarity['idTarget']=h1['id']
corpus = []
corpus.append(h['text'])
corpus.append(h1['text'])
features = vectorizer.fit_transform(corpus).todense()
distance = clacluateDistance(features[0],features[1])
hSimilarity['distance'] = distance
print(hSimilarity)
if distance < 4:
print("Distance ====> %d " % distance)
similarity_collection.insert_one(hSimilarity)
def processTextSimilarity(totalSize, data_array,similarity_collection):
num_cores = multiprocessing.cpu_count()
print(":::num cores ==> %d " % num_cores)
threadList = ["Thread-1", "Thread-2", "Thread-3", "Thread-4"]
threadID = 1;
threads=[]
rootIndex = round(totalSize/4)
startIndex = 0
for tName in threadList:
thread = SimilarityThread(threadID, data_array, startIndex+rootIndex, similarity_collection,startIndex)
thread.start()
startIndex+=rootIndex
threads.append(thread)
threadID += 1
# Wait for all threads to complete
for t in threads:
t.join()
def main():
print('****** Text Similarity::start ******')
connection = pymongo.MongoClient("mongodb://localhost")
db = connection.kalamokomnoor
article = db.article
article_similarity = db.article_similarity
data_array = article.find({}).sort("id",pymongo.ASCENDING)
totalSize = article.count_documents({})
print('###### :: totalSize : %d ' % totalSize)
processTextSimilarity(totalSize,data_array,article_similarity)
print('****** Text Similarity::Ending ******')
if __name__ == '__main__':
main()
If you enjoyed this article and want to learn more about MongoDB, check out this collection of tutorials and articles on all things MongoDB.
MongoDB
Opinions expressed by DZone contributors are their own.
Comments