Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

What Is Amazon Machine Learning: 8 Benefits of AWS ML

DZone's Guide to

What Is Amazon Machine Learning: 8 Benefits of AWS ML

Explore eight benefits of Amazon Machine Learning.

· AI Zone ·
Free Resource

Did you know that 50- 80% of your enterprise business processes can be automated with AssistEdge?  Identify processes, deploy bots and scale effortlessly with AssistEdge.

What Is AWS Machine Learning?

Amazon Machine Learning algorithm discovers pattern and data and constructs the mathematical model using this data. These models are used to make predictions in new data. Machine Learning can be implemented in an ample amount of applications. AWS Machine Learning helps the user to quickly build smart applications that can help to perform important tasks such as fraud detection, demand forecasting, predictive customer support, and quick prediction. Amazon Machine Learning synchronizes the previous data and utilizes it further to provide the necessary information to the user.

Amazon ML is used to review customer feedback in email, product reviews, forum, and phone transcripts. This further recommends the product action to the service team or connects the customer with customer care specialist. AWS Machine Learning is easy to use as the user can locate the data within Amazon Web Services.

Benefits of Amazon Machine Learning

There are 8 AWS Machine Learning Benefits, let’s discuss them one by one:

Open Platform

Machine Learning is suitable for the data researcher, Machine Learning researcher, or developer. AWS offers Machine Learning services and tools tailored to fulfill your wants and level of expertise.

API-Driven Machine Learning Service

Developers will simply add intelligence to any application with a various choice of pre-trained services that give computer vision, speech, language analysis, and chatbot practicality.

Broad Framework Support

AWS supports all the most important Machine Learning frameworks, together with TensorFlow, Caffe2, and Apache MXNet, so you’ll bring or develop any model you select.

A Breadth of Computing Choices

AWS offers a broad array of computing choices for coaching and inference with powerful GPU-based instances, compute and memory optimized instances, and even FPGAs.

Deep Platform Integrations

ML services are deeply integrated with the rest of the platform together with the data lake and database tools you wish to run Machine Learning workloads. The data on AWS offers you access to the foremost complete platform for large data.

Comprehensive Analytics

Choose from a comprehensive set of services for data analysis together with data storage, business intelligence, batch processing, stream process, data progress orchestration.

Secure

Control access to resources with granular permission policies. Storage and database services provide sturdy coding to stay your data secure. Versatile key management choices enable you to settle on whether or not you or AWS can manage the encryption keys.

Economical

Consume services as you wish them and just for the amount you utilize them. AWS pricing has no direct fees, termination penalties, or future contracts. The AWS Free Tier helps you start with AWS.

Additional Information

There is some more information about Amazon Machine Learning:

Sagemaker

Amazon Sagemaker helps data scientists and developers very efficiently. It helps to build, train, and deploy Machine Learning models. Sagemaker has a new architecture which can help with all of its capabilities in your existing Machine Learning workflows.

DeepLens

It is a Deep Learning-enabled video camera, which is made for developers. Integrating this with Amazon Sagemaker will help to get up and running with Deep Learning quickly and easily.

Conclusion

We studied Amazon Machine Learning is a visual tool, which helps to preview the data to ensure quality. After the model is built the user can use AWS Machine Learning tools to evaluate and tune them. After this, the model is ready for further predictions. These applications can also call the batch API for predictions. In addition, real-time API can use to generate predictions on-demand. With Amazon ML the user can create data from large data sets, generate billions of predictions and serve these predictions in real-time and high throughput. There are no upfront costs for AWS ML only the user has to pay for what they have used. This benefits in a way such that the user can start small and scale application as the business grows. Furthermore, if you have any queries, feel free to ask in the comments section.

Consuming AI in byte sized applications is the best way to transform digitally. #BuiltOnAI, EdgeVerve’s business application, provides you with everything you need to plug & play AI into your enterprise.  Learn more.

Topics:
machine learning ,amazon aws ,data science ,ai ,benefits of ai ,open platform ,tensorflow ,ml benefits

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}