DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Please enter at least three characters to search
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workloads.

Related

  • Optimization of I/O Workloads by Profiling in Python
  • Supervised Fine-Tuning (SFT) on VLMs: From Pre-trained Checkpoints To Tuned Models
  • Enhancing Business Decision-Making Through Advanced Data Visualization Techniques
  • Exploring Intercooler.js: Simplify AJAX With HTML Attributes

Trending

  • Creating a Web Project: Caching for Performance Optimization
  • Developers Beware: Slopsquatting and Vibe Coding Can Increase Risk of AI-Powered Attacks
  • Manual Sharding in PostgreSQL: A Step-by-Step Implementation Guide
  • How to Merge HTML Documents in Java
  1. DZone
  2. Data Engineering
  3. Data
  4. What Is Data Profiling?

What Is Data Profiling?

Data profiling is a process of examining data from an existing source and summarizing information about that data. Learn about its benefits!

By 
Garrett Alley user avatar
Garrett Alley
·
Jan. 21, 19 · Analysis
Likes (3)
Comment
Save
Tweet
Share
50.6K Views

Join the DZone community and get the full member experience.

Join For Free

Data profiling is a process of examining data from an existing source and summarizing information about that data. You profile data to determine the accuracy, completeness, and validity of your data. Data profiling can be done for many reasons, but it is most commonly part of helping to determine data quality as a component of a larger project. Commonly, data profiling is combined with an ETL (Extract, Transform, and Load) process to move data from one system to another. When done properly, ETL and data profiling can be combined to cleanse, enrich, and move quality data to a target location.

For example, you might want to perform data profiling when migrating from a legacy system to a new system. Data profiling can help identify data quality issues that need to be handled in the code when you move data into your new system. Or, you might want to perform data profiling as you move data to a data warehouse for business analytics. Often when data is moved to a data warehouse, ETL tools are used to move the data. Data profiling can be helpful in identifying what data quality issues must be fixed in the source, and what data quality issues can be fixed during the ETL process.

Why Profile Data?

Data profiling allows you to answer the following questions about your data:

  • Is the data complete? Are there blank or null values?
  • Is the data unique? How many distinct values are there? Is the data duplicated?
  • Are there anomalous patterns in your data? What is the distribution of patterns in your data?
  • Are these the patterns you expect?
  • What range of values exist, and are they expected? What are the maximum, minimum, and average values for given data? Are these the ranges you expect?

Answering these questions helps you ensure that you are maintaining quality data, which — companies are increasingly realizing — is the cornerstone of a thriving business. For more information, see our post on data quality.

How Do You Profile Data?

Data profiling can be performed in different ways, but there are roughly three base methods used to analyze the data.

  • Column profiling counts the number of times every value appears within each column in a table. This method helps to uncover the patterns within your data.

  • Cross-column profiling looks across columns to perform key and dependency analysis. Key analysis scans collections of values in a table to locate a potential primary key. Dependency analysis determines the dependent relationships within a data set. Together, these analyses determine the relationships and dependencies within a table.

  • Cross-table profiling looks across tables to identify potential foreign keys. It also attempts to determine the similarities and differences in syntax and data types between tables to determine which data might be redundant and which could be mapped together.

Rule validation is sometimes considered the final step in data profiling. This is a proactive step of adding rules that check for the correctness and integrity of the data that is entered into the system.

These different methods may be performed manually by an analyst, or they may be performed by a service that can automate these queries.

Data Profiling Challenges

Data profiling is often difficult due to the sheer volume of data you’ll need to profile. This is especially true if you are looking at a legacy system. A legacy system might have years of older data with thousands of errors. Experts recommend that you segment your data as a part of your data profiling process so that you can see the forest for the trees.

If you manually perform your data profiling, you’ll need an expert to run numerous queries and sift through the results to gain meaningful insights about your data, which can eat up precious resources. In addition, you will likely only be able to check a subset of your overall data because it is too time-consuming to go through the entire data set.

Data (computing) Data profiling

Published at DZone with permission of Garrett Alley, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Optimization of I/O Workloads by Profiling in Python
  • Supervised Fine-Tuning (SFT) on VLMs: From Pre-trained Checkpoints To Tuned Models
  • Enhancing Business Decision-Making Through Advanced Data Visualization Techniques
  • Exploring Intercooler.js: Simplify AJAX With HTML Attributes

Partner Resources

×

Comments
Oops! Something Went Wrong

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends:

Likes
There are no likes...yet! 👀
Be the first to like this post!
It looks like you're not logged in.
Sign in to see who liked this post!