DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
  1. DZone
  2. Coding
  3. Frameworks
  4. Hibernate Caching With Hazelcast: Basic Configuration

Hibernate Caching With Hazelcast: Basic Configuration

In this post, we take a look at how to use Hazelcast as a second-level cache for Hibernate to lower the overhead of repeat database queries.

Emmanouil Gkatziouras user avatar by
Emmanouil Gkatziouras
CORE ·
Feb. 15, 17 · Tutorial
Like (9)
Save
Tweet
Share
13.23K Views

Join the DZone community and get the full member experience.

Join For Free

Previously we went through an introduction to JPA caching, including the mechanisms involved and what Hibernate offers.

What comes next is a Hibernate project using Hazelcast as a second-level cache.

We will use a basic Spring Boot project for this purpose with JPA. Spring Boot uses Hibernate as the default JPA provider. Our setup will be pretty close to the one of a previous post.
We will use PostgreSQL with Docker for our SQL database.

group 'com.gkatzioura'
version '1.0-SNAPSHOT'

buildscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath("org.springframework.boot:spring-boot-gradle-plugin:1.5.1.RELEASE")
    }
}

apply plugin: 'java'
apply plugin: 'idea'
apply plugin: 'org.springframework.boot'


repositories {
    mavenCentral()
}

dependencies {
    compile("org.springframework.boot:spring-boot-starter-web")
    compile group: 'org.springframework.boot', name: 'spring-boot-starter-data-jpa'
    compile group: 'org.postgresql', name:'postgresql', version:'9.4-1206-jdbc42'
    compile group: 'org.springframework', name: 'spring-jdbc'
    compile group: 'com.zaxxer', name: 'HikariCP', version: '2.6.0'
    compile group: 'com.hazelcast', name: 'hazelcast-hibernate5', version: '1.2'
    compile group: 'com.hazelcast', name: 'hazelcast', version: '3.7.5'
    testCompile group: 'junit', name: 'junit', version: '4.11'
}


By examining the dependencies carefully, we see the Hikari pool, the PostgreSQL driver, Spring Data JPA, and, of course, Hazelcast.

Instead of creating the database manually, we will automate it by utilizing the database initialization feature of Spring Boot.

We shall create a file called schema.sql under the resources folder.

create schema spring_data_jpa_example;

create table spring_data_jpa_example.employee(
    id  SERIAL PRIMARY KEY,
    firstname   TEXT    NOT NULL,
    lastname    TEXT    NOT NULL,   
    email       TEXT    not null,
    age         INT     NOT NULL,
    salary         real,
    unique(email)
);

insert into spring_data_jpa_example.employee (firstname,lastname,email,age,salary) 
values ('Test','Me','test@me.com',18,3000.23);


To keep it simple and avoid any further configurations, we shall put the configurations for the datasource, JPA, and caching inside the application.yml file.

spring:
  datasource:
    continue-on-error: true
    type: com.zaxxer.hikari.HikariDataSource
    url: jdbc:postgresql://172.17.0.2:5432/postgres
    driver-class-name: org.postgresql.Driver
    username: postgres
    password: postgres
    hikari:
      idle-timeout: 10000
  jpa:
    properties:
      hibernate:
        cache:
          use_second_level_cache: true
          use_query_cache: true
          region:
            factory_class: com.hazelcast.hibernate.HazelcastCacheRegionFactory
    show-sql: true


The configuration spring.datasource.continue-on-error is crucial, since once the application relaunches, there should be a second attempt to create the database, and thus a crash is inevitable.

Any Hibernate-specific properties reside in the spring.jpa.properties path. We enabled the second-level cache and the query cache.

Also, we set show-sql to true. This means that once a query hits the database, it will be logged through the console.

Then, we create our employee entity.

package com.gkatzioura.hibernate.enitites;

import javax.persistence.*;

/**
 * Created by gkatzioura on 2/6/17.
 */
@Entity
@Table(name = "employee", schema="spring_data_jpa_example")
public class Employee {

    @Id
    @Column(name = "id")
    @GeneratedValue(strategy = GenerationType.SEQUENCE)
    private Long id;

    @Column(name = "firstname")
    private String firstName;

    @Column(name = "lastname")
    private String lastname;

    @Column(name = "email")
    private String email;

    @Column(name = "age")
    private Integer age;

    @Column(name = "salary")
    private Integer salary;

    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    public String getFirstName() {
        return firstName;
    }

    public void setFirstName(String firstName) {
        this.firstName = firstName;
    }

    public String getLastname() {
        return lastname;
    }

    public void setLastname(String lastname) {
        this.lastname = lastname;
    }

    public String getEmail() {
        return email;
    }

    public void setEmail(String email) {
        this.email = email;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }

    public Integer getSalary() {
        return salary;
    }

    public void setSalary(Integer salary) {
        this.salary = salary;
    }
}


Everything is set up. Spring Boot will detect the entity and create an EntityManagerFactory on its own. What comes next is the repository class for Employee.

package com.gkatzioura.hibernate.repository;

import com.gkatzioura.hibernate.enitites.Employee;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.repository.CrudRepository;

/**
 * Created by gkatzioura on 2/11/17.
 */
public interface EmployeeRepository extends JpaRepository<Employee,Long> {
}


And the last one is the controller:

package com.gkatzioura.hibernate.controller;

import com.gkatzioura.hibernate.enitites.Employee;
import com.gkatzioura.hibernate.repository.EmployeeRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

/**
 * Created by gkatzioura on 2/6/17.
 */
@RestController
public class EmployeeController {

    @Autowired
    private EmployeeRepository employeeRepository;

    @RequestMapping("/employee")
    public List<Employee> testIt() {

        return employeeRepository.findAll();
    }

    @RequestMapping("/employee/{employeeId}")
    public Employee getEmployee(@PathVariable Long employeeId) {

        return employeeRepository.findOne(employeeId);
    }

}


Once we issue a request at http://localhost:8080/employee/1, the console will display the query issued to the database:

Hibernate: select employee0_.id as id1_0_0_, employee0_.age as age2_0_0_, employee0_.email as email3_0_0_, employee0_.firstname as firstnam4_0_0_, employee0_.lastname as lastname5_0_0_, employee0_.salary as salary6_0_0_ from spring_data_jpa_example.employee employee0_ where employee0_.id=?


The second time we issue the request, since we have the second cache enabled, there won’t be a query issued on the database. Instead, the entity will be fetched from the second-level cache.

You can download the project from GitHub.

Cache (computing) Spring Framework Database Hibernate Hazelcast Spring Boot

Published at DZone with permission of Emmanouil Gkatziouras, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Unlocking the Power of Elasticsearch: A Comprehensive Guide to Complex Search Use Cases
  • Real-Time Analytics for IoT
  • Building a Real-Time App With Spring Boot, Cassandra, Pulsar, React, and Hilla
  • Create Spider Chart With ReactJS

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: