DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
11 Monitoring and Observability Tools for 2023
Learn more

Monte Carlo Estimate for Pi with NumPy

Giuseppe Vettigli user avatar by
Giuseppe Vettigli
·
Jan. 25, 12 · Interview
Like (0)
Save
Tweet
Share
9.12K Views

Join the DZone community and get the full member experience.

Join For Free

In this post we will use a Monte Carlo method to approximate pi. The idea behind the method that we are going to see is the following:

Draw the unit square and the unit circle. Consider only the part of the circle inside the square and pick uniformly a large number of points at random over the square. Now, the unit circle has pi/4 the area of the square. So, it should be apparent that of the total number of points that hit within the square, the number of points that hit the circle quadrant is proportional to the area of that part. This gives a way to approximate pi/4 as the ratio between the number of points inside circle and the total number of points and multiplying it by 4 we have pi.

Let's see the python script that implements the method discussed above using the numpy's indexing facilities:

from pylab import plot,show,axis
from numpy import random,sqrt,pi

# scattering n points over the unit square
n = 1000000
p = random.rand(n,2)

# counting the points inside the unit circle
idx = sqrt(p[:,0]**2+p[:,1]**2) < 1

plot(p[idx,0],p[idx,1],'b.') # point inside
plot(p[idx==False,0],p[idx==False,1],'r.') # point outside
axis([-0.1,1.1,-0.1,1.1]) 
show()

# estimation of pi
print '%0.16f' % (sum(idx).astype('double')/n*4),'result'
print '%0.16f' % pi,'real pi'

The program will print the pi approximation on the standard out:

3.1457199999999998 result
3.1415926535897931 real pi

and will show a graph with the generated points:



Note that the lines of code used to estimate pi are just 3!

 

Source: http://glowingpython.blogspot.com/2012/01/monte-carlo-estimate-for-pi-with-numpy.html

 

NumPy

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Fargate vs. Lambda: The Battle of the Future
  • Top 10 Best Practices for Web Application Testing
  • How To Build an Effective CI/CD Pipeline
  • Little's Law and Lots of Kubernetes

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: