DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
11 Monitoring and Observability Tools for 2023
Learn more

The sampling theorem explained with numpy

Giuseppe Vettigli user avatar by
Giuseppe Vettigli
·
Nov. 02, 11 · Interview
Like (0)
Save
Tweet
Share
6.35K Views

Join the DZone community and get the full member experience.

Join For Free
The sampling theorem states that a continuous signal x(t) bandlimited to B Hz can be recovered from its samples x[n] = x(n*T), where n is an integer, if T is greater than or equal to 1/(2B) without loss of any information. And we call 2B the Nyquist rate.
Sampling at a rate below the Nyquist rate is called undersampling, it leads to the aliasing effect. Let's observe the aliasing effect with the following Python script:

from numpy import linspace,cos,pi,ceil,floor,arange

from pylab import plot,show,axis

# sampling a signal badlimited to 40 Hz 
# with a sampling rate of 800 Hz
f = 40;  # Hz
tmin = -0.3;
tmax = 0.3;
t = linspace(tmin, tmax, 400);
x = cos(2*pi*t) + cos(2*pi*f*t); # signal sampling
plot(t, x)

# sampling the signal with a sampling rate of 80 Hz
# in this case, we are using the Nyquist rate.
T = 1/80.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x1 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x1, 'bo')

# sampling the signal with a sampling rate of 35 Hz
# note that 35 Hz is under the Nyquist rate.
T = 1/35.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x2 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x2, '-r.',markersize=8)

axis([-0.3, 0.3, -1.5, 2.3])
show()

The following figure is the result:


The blue curve is the original signal, the blue dots are the samples obtained with the Nyquist rate and the red dots are the samples obtainde with 35 Hz. It's easy to see that the blue samples are enough to recover the blue curve, while the red ones are not enough to capture the oscillations of the signal.
Theorem NumPy

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • How To Best Use Java Records as DTOs in Spring Boot 3
  • Custom Validators in Quarkus
  • 5 Steps for Getting Started in Deep Learning
  • What’s New in the Latest Version of Angular V15?

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: