DZone
Web Dev Zone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
  • Refcardz
  • Trend Reports
  • Webinars
  • Zones
  • |
    • Agile
    • AI
    • Big Data
    • Cloud
    • Database
    • DevOps
    • Integration
    • IoT
    • Java
    • Microservices
    • Open Source
    • Performance
    • Security
    • Web Dev
DZone > Web Dev Zone > The sampling theorem explained with numpy

The sampling theorem explained with numpy

Giuseppe Vettigli user avatar by
Giuseppe Vettigli
·
Nov. 02, 11 · Web Dev Zone · Interview
Like (0)
Save
Tweet
5.83K Views

Join the DZone community and get the full member experience.

Join For Free
The sampling theorem states that a continuous signal x(t) bandlimited to B Hz can be recovered from its samples x[n] = x(n*T), where n is an integer, if T is greater than or equal to 1/(2B) without loss of any information. And we call 2B the Nyquist rate.
Sampling at a rate below the Nyquist rate is called undersampling, it leads to the aliasing effect. Let's observe the aliasing effect with the following Python script:

from numpy import linspace,cos,pi,ceil,floor,arange

from pylab import plot,show,axis

# sampling a signal badlimited to 40 Hz 
# with a sampling rate of 800 Hz
f = 40;  # Hz
tmin = -0.3;
tmax = 0.3;
t = linspace(tmin, tmax, 400);
x = cos(2*pi*t) + cos(2*pi*f*t); # signal sampling
plot(t, x)

# sampling the signal with a sampling rate of 80 Hz
# in this case, we are using the Nyquist rate.
T = 1/80.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x1 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x1, 'bo')

# sampling the signal with a sampling rate of 35 Hz
# note that 35 Hz is under the Nyquist rate.
T = 1/35.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x2 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x2, '-r.',markersize=8)

axis([-0.3, 0.3, -1.5, 2.3])
show()

The following figure is the result:


The blue curve is the original signal, the blue dots are the samples obtained with the Nyquist rate and the red dots are the samples obtainde with 35 Hz. It's easy to see that the blue samples are enough to recover the blue curve, while the red ones are not enough to capture the oscillations of the signal.
Theorem NumPy

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Flutter vs React Native. How to Cover All Mobile Platforms in 2022 With No Hassle
  • How to Handle Early Startup Technical Debt (Or Just Avoid it Entirely)
  • Upload Files to AWS S3 in JMeter Using Groovy
  • ERP Integration Guide | Common Scenarios, Challenges, and Methods

Comments

Web Dev Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • MVB Program
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends:

DZone.com is powered by 

AnswerHub logo