DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workkloads.

Secure your stack and shape the future! Help dev teams across the globe navigate their software supply chain security challenges.

Releasing software shouldn't be stressful or risky. Learn how to leverage progressive delivery techniques to ensure safer deployments.

Avoid machine learning mistakes and boost model performance! Discover key ML patterns, anti-patterns, data strategies, and more.

Related

  • Essential Python Libraries: Introduction to NumPy and Pandas
  • Consistency vs Availability: The Eternal Struggle in Distributed Databases
  • CAP Theorem for Distributed System
  • Norm of a One-Dimensional Tensor in Python Libraries

Trending

  • Integrating Security as Code: A Necessity for DevSecOps
  • Unlocking the Potential of Apache Iceberg: A Comprehensive Analysis
  • Beyond ChatGPT, AI Reasoning 2.0: Engineering AI Models With Human-Like Reasoning
  • Measuring the Impact of AI on Software Engineering Productivity

The sampling theorem explained with numpy

By 
Giuseppe Vettigli user avatar
Giuseppe Vettigli
·
Nov. 02, 11 · Interview
Likes (0)
Comment
Save
Tweet
Share
7.1K Views

Join the DZone community and get the full member experience.

Join For Free
The sampling theorem states that a continuous signal x(t) bandlimited to B Hz can be recovered from its samples x[n] = x(n*T), where n is an integer, if T is greater than or equal to 1/(2B) without loss of any information. And we call 2B the Nyquist rate.
Sampling at a rate below the Nyquist rate is called undersampling, it leads to the aliasing effect. Let's observe the aliasing effect with the following Python script:

from numpy import linspace,cos,pi,ceil,floor,arange

from pylab import plot,show,axis

# sampling a signal badlimited to 40 Hz 
# with a sampling rate of 800 Hz
f = 40;  # Hz
tmin = -0.3;
tmax = 0.3;
t = linspace(tmin, tmax, 400);
x = cos(2*pi*t) + cos(2*pi*f*t); # signal sampling
plot(t, x)

# sampling the signal with a sampling rate of 80 Hz
# in this case, we are using the Nyquist rate.
T = 1/80.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x1 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x1, 'bo')

# sampling the signal with a sampling rate of 35 Hz
# note that 35 Hz is under the Nyquist rate.
T = 1/35.0;
nmin = ceil(tmin / T);
nmax = floor(tmax / T);
n = arange(nmin,nmax);
x2 = cos(2*pi*n*T) + cos(2*pi*f*n*T);
plot(n*T, x2, '-r.',markersize=8)

axis([-0.3, 0.3, -1.5, 2.3])
show()

The following figure is the result:


The blue curve is the original signal, the blue dots are the samples obtained with the Nyquist rate and the red dots are the samples obtainde with 35 Hz. It's easy to see that the blue samples are enough to recover the blue curve, while the red ones are not enough to capture the oscillations of the signal.
Theorem NumPy

Opinions expressed by DZone contributors are their own.

Related

  • Essential Python Libraries: Introduction to NumPy and Pandas
  • Consistency vs Availability: The Eternal Struggle in Distributed Databases
  • CAP Theorem for Distributed System
  • Norm of a One-Dimensional Tensor in Python Libraries

Partner Resources

×

Comments

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: