DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

The software you build is only as secure as the code that powers it. Learn how malicious code creeps into your software supply chain.

Apache Cassandra combines the benefits of major NoSQL databases to support data management needs not covered by traditional RDBMS vendors.

Generative AI has transformed nearly every industry. How can you leverage GenAI to improve your productivity and efficiency?

Modernize your data layer. Learn how to design cloud-native database architectures to meet the evolving demands of AI and GenAI workloads.

Related

  • Real-Time Data Architecture Frameworks
  • Building Analytics Architectures to Power Real-Time Applications
  • Modern Enterprise Data Architecture
  • Emerging Data Architectures: The Future of Data Management

Trending

  • Dropwizard vs. Micronaut: Unpacking the Best Framework for Microservices
  • IoT and Cybersecurity: Addressing Data Privacy and Security Challenges
  • DGS GraphQL and Spring Boot
  • Building Resilient Identity Systems: Lessons from Securing Billions of Authentication Requests
  1. DZone
  2. Data Engineering
  3. Data
  4. The Benefits of Building a Modern Data Architecture for Big Data Analytics

The Benefits of Building a Modern Data Architecture for Big Data Analytics

In this article, we discuss some ways that organizations can better architect their data and the benefits this brings to their data analysis efforts.

By 
Mark Gibbs user avatar
Mark Gibbs
·
Oct. 03, 18 · Analysis
Likes (5)
Comment
Save
Tweet
Share
9.7K Views

Join the DZone community and get the full member experience.

Join For Free

Modern data-driven companies are the best at leveraging data to anticipate customer needs, changes in the market, and proactively make more intelligent business decisions. According to the Gartner 2018 CEO and Senior Business Executive Survey, 81 percent of CEOs have prioritized technology initiatives that enable them to acquire advanced analytics. While many companies tapping into advanced analytics are now rethinking their data architecture and beginning data lake projects, 60 percent of these projects fail to go beyond piloting and experimentation, according to Gartner. In fact, that same Gartner survey reports that only 17 percent of Hadoop deployments were in production in 2017. If companies don't successfully modernize their data architecture now, they will end up losing customers, market share, and profits.

What Drives the Shift to a Modern Enterprise Data Architecture?

The architectures that have dominated enterprise IT in the past can no longer handle the workloads needed to move the business forward. This shift towards a modern data architecture is driven by a set of key business drivers. There are seven key business drivers for building a modern enterprise data architecture (MEDA):

  1. Supporting the democratization of data, which requires data sharing, quality, security, and governance.
  2. Enabling the "hyper-connected" enterprise within and beyond your organization.
  3. Supporting a move to self-service and the Citizen X (integrator, data scientist, etc.).
  4. Moving from historical reporting to predictive and prescriptive analytics.
  5. Enabling a greater responsiveness to the line of business (LOB) users.
  6. Future-proofing for new data sources and downstream applications and use cases.
  7. Achieving the elusive enterprise digital transformation.

Cloud-Based Data Lakes: At the Core of a Modern Enterprise Data Architecture

While there are so many reasons to push data projects forward, organizations are often held back from using their data by incompatible formats, limitations of traditional databases, and the inability to flexibly combine data from multiple sources. This is why cloud-based data lakes have replaced the enterprise data warehouse (EDW) as the core of a modern data architecture.

Unlike a data warehouse, a data lake is a collection of all data types: structured, semi-structured, and unstructured. Data is stored in its raw format without the need for any structure or schema. In fact, data structure doesn't need to be defined when being captured, only when being read. Because data lakes are highly scalable you can support larger volumes of data at a cheaper price. With a data lake, data can also be stored from relational sources (like databases) and from non-relational sources (IoT devices/machines, social media, etc.) without ETL (extract, transform, load), allowing data to be available for analysis much faster.

The enterprise data warehouse (EDW) as we know it is neither dead nor will it be any time soon. However, it's no longer the centerpiece of an enterprise's data architecture strategy. The EDW remains a mission-critical component in a company's overall MEDA, but it should now be viewed as a "downstream application" — a destination, but not the center of your data universe.

Next Steps in Building a Modern Enterprise Data Architecture

The journey to building a modern enterprise data architecture can seem long and challenging, but with the right framework and principles, you can successfully make this transformation sooner than you think. Download our white paper, "Easing the pain of big data: The Modern Enterprise Data Architecture (MEDA)" to learn how to build a MEDA that is flexible enough to be used today and scale for tomorrow's use cases.

Big data Data architecture Architecture Analytics

Published at DZone with permission of Mark Gibbs, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Real-Time Data Architecture Frameworks
  • Building Analytics Architectures to Power Real-Time Applications
  • Modern Enterprise Data Architecture
  • Emerging Data Architectures: The Future of Data Management

Partner Resources

×

Comments

The likes didn't load as expected. Please refresh the page and try again.

ABOUT US

  • About DZone
  • Support and feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: